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Preface

In 2000 I wrote a book called The Haskell School of Expression – Learning
Functional Programming through Multimedia [Hud00]. In that book I used
graphics, animation, music, and robotics as a way to motivate learning how
to program, and specifically how to learn functional programming using
Haskell, a purely functional programming language. Haskell [P+03] is quite
a bit different from conventional imperative or object-oriented languages
such as C, C++, Java, C#, and so on. It takes a different mind-set to
program in such a language, and appeals to the mathematically inclined
and to those who seek purity and elegance in their programs. Although
Haskell was designed over twenty years ago, it has only recently begun to
catch on in a significant way, not just because of its purity and elegance,
but because with it you can solve real-world problems quickly and efficiently,
and with great economy of code.

I have also had a long, informal, yet passionate interest in music, being
an amateur jazz pianist and having played in several bands over the years.
About fifteen years ago, in an effort to combine work with play, I and my
students wrote a Haskell library called Haskore for expressing high-level
computer music concepts in a purely functional way [HMGW96, Hud96,
Hud03]. Indeed, three of the chapters in The Haskell School of Expression
summarize the basic ideas of this work. Soon after that, with the help of
another student, I designed a Haskell library called HasSound that was,
essentially, a Haskell interface to csound [Ver86] for doing sound synthesis
and instrument design.

Thus, when I recently became responsible for the Music Track in the
new Computing and the Arts major at Yale, and became responsible for
teaching not one, but two computer music courses in the new curriculum, it
was natural to base the course material on Haskell. This current book is a
rewrite of The Haskell School of Expression with a focus on computer music,
based on, and greatly improving upon, the ideas in Haskore and HasSound.

xiv



PREFACE xv

The new Haskell library that incorporates all of this is called Euterpea.

Haskell was named after the logician Haskell B. Curry who, along with
Alonzo Church, helped establish the theoretical foundations of functional
programming in the 1940’s, when digital computers were mostly just a gleam
in researchers’ eyes. A curious historical fact is that Haskell Curry’s father,
Samuel Silas Curry, helped found and direct a school in Boston called the
School of Expression. (This school eventually evolved into what is now Curry
College.) Since pure functional programming is centered around the notion
of an expression, I thought that The Haskell School of Expression would be
a good title for my first book. And it was thus quite natural to choose The
Haskell School of Music for my second!

How To Read This Book

As mentioned earlier, there is a certain mind-set, a certain viewpoint of the
world, and a certain approach to problem solving that collectively work best
when programming in Haskell (this is true for any programming paradigm).
If you teach only Haskell language details to a C programmer, he or she is
likely to write ugly, incomprehensible functional programs. But if you teach
how to think differently, how to see problems in a different light, functional
solutions will come easily, and elegant Haskell programs will result. As
Samuel Silas Curry once said:

All expression comes from within outward, from the center to
the surface, from a hidden source to outward manifestation. The
study of expression as a natural process brings you into contact
with cause and makes you feel the source of reality.

What is especially beautiful about this quote is that music is also a form
of expression, although Curry was more likely talking about writing and
speaking. In addition, as has been noted by many, music has many ties
to mathematics. So for me, combining the elegant mathematical nature of
Haskell with that of music is as natural as singing a nursery tune.

Using a high-level language to express musical ideas is, of course, not
new. But Haskell is unique in its insistence on purity (no side effects), and
this alone makes it particularly suitable for expressing musical ideas. By
focusing on what a musical entity is rather than on how to create it, we allow
musical ideas to take their natural form as Haskell expressions. Haskell’s
many abstraction mechanisms allow us to write computer music programs
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that are elegant, concise, yet powerful. We will consistently attempt to let
the music express itself as naturally as possible, without encoding it in terms
of irrelevant language details.

Of course, my ultimate goal is not just to teach computer music concepts.
Along the way you will also learn Haskell. There is no limit to what one
might wish to do with computer music, and therefore the better you are
at programming, the more success you will have. This is why I think that
many languages designed specifically for computer music—although fun to
work with, easy to use, and cute in concept—face the danger of being too
limited in expressiveness.

You do not need to know much, if any, music theory to read this book,
and you do not need to play an instrument. Of course, the more you know
about music, the more you will be able to apply the concepts learned in this
text in musically creative ways.

My general approach to introducing computer music concepts is to first
provide an intuitive explanation, then a mathematically rigorous definition,
and finally fully executable Haskell code. In the process I introduce Haskell
features as they are needed, rather than all at once. I believe that this
interleaving of concepts and applications makes the material easier to digest.

Another characteristic of my approach is that I do not hide any details—I
want Euterpea to be as transparent as possible! There are no magical built-
in operations, no special computer music commands or values. This works
out well for several reasons. First, there is in fact nothing ugly or difficult
to hide—so why hide anything at all? Second, by reading the code, you will
better and more quickly understand Haskell. Finally, by stepping through
the design process with me, you may decide that you prefer a different
approach—there is, after all, no One True Way to express computer music
ideas. I expect that this process will position you well to write rich, creative
musical applications on your own.

I encourage the seasoned programmer having experience only with con-
ventional imperative and/or object-oriented languages to read this text with
an open mind. Many things will be different, and will likely feel awkward.
There will be a tendency to rely on old habits when writing new programs,
and to ignore suggestions about how to approach things differently. If you
can manage to resist those tendencies I am confident that you will have an
enjoyable learning experience. Those who succeed in this process often find
that many ideas about functional programming can be applied to impera-
tive and object-oriented languages as well, and that their imperative coding
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style changes for the better.

I also ask the experienced programmer to be patient while in the earlier
chapters I explain things like “syntax,” “operator precedence,” etc., since it
is my goal that this text should be readable by someone having only modest
prior programming experience. With patience the more advanced ideas will
appear soon enough.

If you are a novice programmer, I suggest taking your time with the
book; work through the exercises, and don’t rush things. If, however, you
don’t fully grasp an idea, feel free to move on, but try to re-read difficult
material at a later time when you have seen more examples of the concepts
in action. For the most part this is a “show by example” textbook, and
you should try to execute as many of the programs in this text as you can,
as well as every program that you write. Learn-by-doing is the corollary to
show-by-example.

Finally, I note that some section titles are prefaced with the parenthetical
phrase, “[Advanced]”. These sections may be skipped upon first reading,
especially if the focus is on learning computer music concepts, as opposed
to programming concepts.

Haskell Implementations

There are several implementations of Haskell, all available free on the Inter-
net through the Haskell users’ website at http://haskell.org. However,
the one that has dominated all others, and on which Euterpea is based,
is GHC, an easy-to-use and easy-to-install Haskell compiler and interpreter
(see http://haskell.org/ghc). GHC runs on a variety of platforms, in-
cluding PC’s, various flavors of Unix, and Macs. The preferred way to install
GHC is through theHaskell Platform (http://hackage.haskell.org/platform/).
Any text editor can be used to create source files, but I prefer to use emacs
(see http://www.gnu.org/software/emacs), along with its Haskell mode
(see http://projects.haskell.org/haskellmode-emacs/). The entire
Euterpea library, including the source code from this textbook, and instal-
lation instructions, can be found at http://haskell.cs.yale.edu.

http://haskell.org
http://haskell.org/ghc
http://hackage.haskell.org/platform/
http://www.gnu.org/software/emacs
http://projects.haskell.org/haskellmode-emacs/
http://haskell.cs.yale.edu
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Chapter 1

Overview of Computer
Music, Euterpea, and Haskell

Computers are everywhere. And so is music! Although some might think
of the two as being at best distant relatives, in fact they share many deep
properties. Music comes from the soul, and is inspired by the heart, yet it
has the mathematical rigor of computers. Computers have mathematical
rigor of course, yet the most creative ideas in mathematics and computer
science come from the soul, just like music. Both disciplines demand both
left-brain and right-brain skills. It always surprises me how many computer
scientists and mathematicians have a serious interest in music. It seems
that those with a strong affinity or acuity in one of these disciplines is often
strong in the other as well.

It is quite natural then to consider how the two might interact. In
fact there is a long history of interactions between music and mathematics,
dating back to the Greeks’ construction of musical scales based on arithmetic
relationships, and including many classical composers use of mathematical
structures, the formal harmonic analysis of music, and many modern music
composition techniques. Advanced music theory uses ideas from diverse
branches of mathematics such as number theory, abstract algebra, topology,
category theory, calculus, and so on.

There is also a long history of efforts to combine computers and music.
Most consumer electronics today are digital, as are most forms of audio pro-
cessing and recording. But in addition, digital musical instruments provide
new modes of expression, notation software and sequencers have become
standard tools for the working musician, and those with the most computer

1
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science savvy use computers to explore new modes of composition, transfor-
mation, performance, and analysis.

This textbook explores the fundamentals of computer music using a
language-centric approach. In particular, the functional programming lan-
guage Haskell is used to express all of the computer music concepts. Thus
a by-product of learning computer music concepts will be learning how to
program in Haskell. The core musical ideas are collected into a Haskell li-
brary called Euterpea. The name “Euterpea” is derived from Euterpe, who
was one of the nine Greek muses, or goddesses of the arts, specifically the
muse of music. A hypothetical picture of Euterpe graces the cover of this
textbook.

1.1 The Note vs. Signal Dichotomy

The field of computer music has grown astronomically over the past several
decades, and the material can be structured and organized along several
dimensions. A dimension that proves particulary useful with respect to a
programming language is one that separates high-level musical concerns from
low-level musical concerns. Since a “high-level” programming language—
namely Haskell—is used to program at both of these musical levels, to avoid
confusion the terms note level and signal level will be used in the musical
dimension.

At the note level, a note (i.e. pitch and duration) is the lowest musical
entity that is considered, and everything else is built up from there. At this
level, in addition to conventional representations of music, we can study in-
teresting aspects of so-called algorithmic composition, including the use of
fractals, grammar-based systems, stochastic processes, and so on. From this
basis we can also study the harmonic and rhythmic analysis of music, al-
though that is not currently an emphasis in this textbook. Haskell facilitates
programming at this level through its powerful data abstraction facilities,
higher-order functions, and declarative semantics.

In contrast, at the signal level the focus is on the actual sound generated
in a computer music application, and thus a signal is the lowest entity that
is considered. Sound is concretely represented in a digital computer by a
discrete sampling of the continuous audio signal, at a high enough rate that
human ears cannot distinguish the discrete from the continuous, usually
44,100 samples per second (the standard sampling rate used for CDs, mp3
files, and so on). But in Euterpea, these details are hidden: signals are
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treated abstractly as continuous quantities. This greatly eases the burden
of programming with sequences of discrete values. At the signal level, we can
study sound synthesis techniques (to simulate the sound of a conventional
instrument, say, or something completely artificial), audio processing (e.g.
determining the frequency spectrum of a signal), and special effects (reverb,
panning, distortion, and so on).

Suppose for a moment that a musician is playing music using a metro-
nome set at 96, which corresponds to 96 beats per minute. That means that
one beat takes 60/96 = 0.625 seconds. At a stereo sampling rate of 44,100
samples per second, that in turn translates into 2×0.625×44, 100 = 55,125
samples, and each sample typically occupies several bytes of computer mem-
ory. This is typical of the minimum memory requirements of a computation
at the signal level. In contrast, at the note level, we only need some kind
of operator or data structure that says “play this note,” which requires a
total of only a small handful of bytes. This dramatic difference highlights
one of the key computational differences between programming at the note
level versus the signal level.

Of course, many computer music applications involve both the note level
and the signal level, and indeed there needs to be a mechanism to mediate
between the two. Although such mediation can take many forms, it is for
the most part straightforward. Which is another reason why the distinction
between the note level and the signal level is so natural.

This textbook begins with a treatment of the note level (Chapters 1-17)
and follows with a treatment of the signal level (Chapters 18-21). If you are
interested only in the signal level, you could skip Chapters 8-17.

1.2 Basic Principles of Programming

Programming, in its broadest sense, is problem solving. It begins by rec-
ognizing problems that can and should be solved using a digital computer.
Thus the first step in programming is answering the question, “What prob-
lem am I trying to solve?”

Once the problem is understood, a solution must be found. This may
not be easy, of course, and in fact you may discover several solutions, so a
way to measure success is needed. There are various dimensions in which to
do this, including correctness (“Will I get the right answer?”) and efficiency
(“Will it run fast enough, or use too much memory?”). But the distinction of
which solution is better is not always clear, since the number of dimensions
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can be large, and programs will often excel in one dimension and do poorly
in others. For example, there may be one solution that is fastest, one that
uses the least amount of memory, and one that is easiest to understand.
Deciding which to choose can be difficult, and is one of the more interesting
challenges in programming.

The last measure of success mentioned above—clarity of a program—
is somewhat elusive: difficult to quantify and measure. Nevertheless, in
large software systems clarity is an especially important goal, since such
systems are worked on by many people over long periods of time, and evolve
considerably as they mature. Having easy-to-understand code makes it much
easier to modify.

In the area of computer music, there is another reason why clarity is
important: namely, that the code often represents the author’s thought
process, musical intent, and artistic choices. A conventional musical score
does not say much about what the composer thought as she wrote the music,
but a program often does. So when you write your programs, write them for
others to see, and aim for elegance and beauty, just like the musical result
that you desire.

Programming is itself a creative process. Sometimes programming so-
lutions (or artistic creations) come to mind all at once, with little effort.
More often, however, they are discovered only after lots of hard work! We
may write a program, modify it, throw it away and start over, give up, start
again, and so on. It is important to realize that such hard work and rework-
ing of programs is the norm, and in fact you are encouraged to get into the
habit of doing so. Do not always be satisfied with your first solution, and
always be prepared to go back and change or even throw away those parts
of your program that you are not happy with.

1.3 Computation by Calculation

It is helpful when learning a new programming language to have a good
grasp of how programs in that language are executed—in other words, an
understanding of what a programmeans. The execution of Haskell programs
is perhaps best understood as computation by calculation. Programs in
Haskell can be viewed as functions whose input is that of the problem being
solved, and whose output is the desired result—and the behavior of functions
can be effectively understood as computation by calculation.

An example involving numbers might help to demonstrate these ideas.
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Numbers are used in many applications, and computer music is no exception.
For example, integers might be used to represent pitch, and floating-point
numbers might be used to perform calculations involving frequency or am-
plitude.

Suppose we wish to perform an arithmetic calculation such as 3×(9+5).
In Haskell this would be written as 3∗(9+5), since most standard computer
keyboards and text editors do not recognize the special symbol×. The result
can be calculated as follows:

3 ∗ (9 + 5)
⇒ 3 ∗ 14
⇒ 42

It turns out that this is not the only way to compute the result, as evidenced
by this alternative calculation:1

3 ∗ (9 + 5)
⇒ 3 ∗ 9 + 3 ∗ 5
⇒ 27 + 3 ∗ 5
⇒ 27 + 15
⇒ 42

Even though this calculation takes two extra steps, it at least gives the
same, correct answer. Indeed, an important property of each and every
program written in Haskell is that it will always yield the same answer
when given the same inputs, regardless of the order chosen to perform the
calculations.2 This is precisely the mathematical definition of a function:
for the same inputs, it always yields the same output.

On the other hand, the first calculation above required fewer steps than
the second, and thus it is said to be more efficient. Efficiency in both space
(amount of memory used) and time (number of steps executed) is important
when searching for solutions to problems. Of course, if the computation
returns the wrong answer, efficiency is a moot point. In general it is best
to search first for an elegant (and correct!) solution to a problem, and later
refine it for better performance. This strategy is sometimes summarized as,
“Get it right first!”

The above calculations are fairly trivial, but much more sophisticated
computations will be introduced soon enough. For starters—and to intro-

1This assumes that multiplication distributes over addition in the number system being
used, a point that will be returned to later in the text.

2This is true as long as a non-terminating sequence of calculations is not chosen, another
issue that will be addressed later.
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duce the idea of a Haskell function—the arithmetic operations performed in
the previous example can be generalized by defining a function to perform
them for any numbers x , y , and z :

simple x y z = x ∗ (y + z )

This equation defines simple as a function of three arguments, x , y , and z .
In mathematical notation this definition might be written differently, such
as one of the following:

simple(x, y, z) = x× (y + z)
simple(x, y, z) = x · (y + z)
simple(x, y, z) = x(y + z)

In any case, it should be clear that “simple 3 9 5” is the same as “3∗(9+5).”
In fact the proper way to calculate the result is:

simple 3 9 5
⇒ 3 ∗ (9 + 5)
⇒ 3 ∗ 14
⇒ 42

The first step in this calculation is an example of unfolding a function
definition: 3 is substituted for x , 9 for y , and 5 for z on the right-hand side
of the definition of simple . This is an entirely mechanical process, not unlike
what the computer actually does to execute the program.

simple 3 9 5 is said to evaluate to 42. To express the fact that an
expression e evaluates (via zero, one, or possibly many more steps) to the
value v, we will write e =⇒ v (this arrow is longer than that used earlier).
So we can say directly, for example, that simple 3 9 5 =⇒ 42, which should
be read “simple 3 9 5 evaluates to 42.”

With simple now suitably defined, we can repeat the sequence of arith-
metic calculations as often as we like, using different values for the arguments
to simple . For example, simple 4 3 2 =⇒ 20.

We can also use calculation to prove properties about programs. For
example, it should be clear that for any a, b, and c, simple a b c should
yield the same result as simple a c b. For a proof of this, we calculate
symbolically ; that is, using the symbols a, b, and c rather than concrete
numbers such as 3, 5, and 9:

simple a b c
⇒ a ∗ (b + c)
⇒ a ∗ (c + b)
⇒ simple a c b
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Note that the same notation is used for these symbolic steps as for concrete
ones. In particular, the arrow in the notation reflects the direction of formal
reasoning, and nothing more. In general, if e1 ⇒ e2, then it is also true that
e2 ⇒ e1.

These symbolic steps are also referred to as as “calculations,” even
though the computer will not typically perform them when executing a pro-
gram (although it might perform them before a program is run if it thinks
that it might make the program run faster). The second step in the calcu-
lation above relies on the commutativity of addition (namely that, for any
numbers x and y, x+ y = y + x). The third step is the reverse of an unfold
step, and is appropriately called a fold calculation. It would be particu-
larly strange if a computer performed this step while executing a program,
since it does not seem to be headed toward a final answer. But for proving
properties about programs, such “backward reasoning” is quite important.

When we wish to spell out the justification for each step, whether sym-
bolic or concrete, a calculation can be annotated with more detail, as in:

simple a b c
⇒ {unfold }
a ∗ (b + c)
⇒ {commutativity }
a ∗ (c + b)
⇒ {fold }
simple a c b

In most cases, however, this will not be necessary.

Proving properties of programs is another theme that will be repeated
often in this text. Computer music applications often have some kind of a
mathematical basis, and that mathematics must be reflected somewhere in
our programs. But how do we know if we got it right? Proof by calculation
is one way to connect the problem specification with the program solution.

More broadly speaking, as the world begins to rely more and more on
computers to accomplish not just ordinary tasks such as writing term pa-
pers, sending email, and social networking, but also life-critical tasks such
as controlling medical procedures and guiding spacecraft, then the correct-
ness of programs gains in importance. Proving complex properties of large,
complex programs is not easy—and rarely if ever done in practice—but that
should not deter us from proving simpler properties of the whole system, or
complex properties of parts of the system, since such proofs may uncover
errors, and if not, will at least give us confidence in our effort.
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If you are someone who is already an experienced programmer, the idea
of computing everything by calculation may seem odd at best, and näıve at
worst. How do we write to a file, play a sound, draw a picture, or respond
to mouse-clicks? If you are wondering about these things, it is hoped that
you have patience reading the early chapters, and that you find delight in
reading the later chapters where the full power of this approach begins to
shine.

In many ways this first chapter is the most difficult, since it contains the
highest density of new concepts. If the reader has trouble with some of the
concepts in this overview chapter, keep in mind that most of them will be
revisited in later chapters. And do not hesitate to return to this chapter
later to re-read difficult sections; they will likely be much easier to grasp at
that time.

Details: In the remainder of this textbook the need will often arise to explain

some aspect of Haskell in more detail, without distracting too much from the

primary line of discourse. In those circumstances the explanations will be offset in

a shaded box such as this one, proceeded with the word “Details.”

Exercise 1.1 Write out all of the steps in the calculation of the value of

simple (simple 2 3 4) 5 6

Exercise 1.2 Prove by calculation that simple (a − b) a b =⇒ a2 − b2.

1.4 Expressions and Values

In Haskell, the entities on which calculations are performed are called expres-
sions, and the entities that result from a calculation—i.e. “the answers”—are
called values. It is helpful to think of a value just as an expression on which
no more calculation can be carried out—every value is an expression, but
not the other way around.

Examples of expressions include atomic (meaning, indivisible) values
such as the integer 42 and the character ’a’, which are examples of two
primitive atomic values in Haskell. The next chapter introduces examples
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of constructor atomic values, such as the musical notes C , D , Ef , Fs , etc.,
which in standard music notation are written C, D, E♭, F♯, etc., and are
pronounced C, D, E-flat, F-sharp, etc. (In music theory, note names are
called pitch classes.).

In addition, there are structured expressions (i.e., made from smaller
pieces) such as the list of pitches [C ,D ,Ef ], the character/number pair
(’b’, 4) (lists and pairs are different in a subtle way, to be described later),
and the string "Euterpea". Each of these structured expressions is also a
value, since by themselves there is no further calculation that can be carried
out. As another example, 1+ 2 is an expression, and one step of calculation
yields the expression 3, which is a value, since no more calculations can
be performed. As a final example, as was expained earlier, the expression
simple 3 9 5 evaluates to the value 42.

Sometimes, however, an expression has only a never-ending sequence of
calculations. For example, if x is defined as:

x = x + 1

then here is what happens when trying to calculate the value of x :

x
⇒ x + 1
⇒ (x + 1) + 1
⇒ ((x + 1) + 1) + 1
⇒ (((x + 1) + 1) + 1) + 1
...

Similarly, if a function f is defined as:

f x = f (x − 1)

then an expression such as f 42 runs into a similar problem:

f 42
⇒ f 41
⇒ f 40
⇒ f 39
...

Both of these clearly result in a never-ending sequence of calculations. Such
expressions are said to not terminate, or diverge. In such cases the symbol
⊥, pronounced “bottom,” is used to denote the value of the expression.
This means that every diverging computation in Haskell denotes the same
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⊥ value,3 reflecting the fact that, from an observer’s point of view, there is
nothing to distinguish one diverging computation from another.

1.5 Types

Every expression (and therefore every value) also has an associated type.
It is helpful to think of types as sets of expressions (or values), in which
members of the same set have much in common. Examples include the
primitive atomic types Integer (the set of all integers) and Char (the set
of all characters), the user-defined atomic type PitchClass (the set of all
pitch classes, i.e. note names), as well as the structured types [Integer ]
and [PitchClass ] (the sets of all lists of integers and lists of pitch classes,
respectively), and String (the set of all Haskell strings).

The association of an expression or value with its type is very useful,
and there is a special way of expressing it in Haskell. Using the examples of
values and types above:

D :: PitchClass
42 :: Integer
’a’ :: Char
"Euterpea" :: String
[C ,D ,Ef ] :: [PitchClass ]
(’b’, 4) :: (Char , Integer )

Each association of an expression with its type is called a type signature.

Details: Note that the names of specific types are capitalized, such as Integer

and Char , as are the names of some atomic values such as D and Fs . These

will never be confused in context, since things to the right of “::” are types, and

things to the left are values. Note also that user-defined names of values are not

capitalized, such as simple and x . This is not just a convention: it is required when

programming in Haskell. In addition, the case of the other characters matters, too.

For example, test , teSt , and tEST are all distinct names for values, as are Test ,

TeST , and TEST for types.

3Technically, each type has its own version of ⊥.
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Details: Literal characters are written enclosed in single forward quotes (apos-
trophes), as in ’a’, ’A’, ’b’, ’,’, ’!’, ’ ’ (a space), and so on. (There are
some exceptions, however; see the Haskell Report for details.) Strings are written
enclosed in double quote characters, as in "Euterpea" above. The connection
between characters and strings will be explained in a later chapter.

The “::” should be read “has type,” as in “42 has type Integer .” Note that square

braces are used both to construct a list value (the left-hand side of (::) above), and

to describe its type (the right-hand side above). Analogously, the round braces

used for pairs are used in the same way. But also note that all of the elements in

a list, however long, must have the same type, whereas the elements of a pair can

have different types.

Haskell’s type system ensures that Haskell programs are well-typed ; that
is, that the programmer has not mismatched types in some way. For ex-
ample, it does not make much sense to add together two characters, so the
expression ’a’+’b’ is ill-typed. The best news is that Haskell’s type system
will tell you if your program is well-typed before you run it. This is a big
advantage, since most programming errors are manifested as type errors.

1.6 Function Types and Type Signatures

What should the type of a function be? It seems that it should at least
convey the fact that a function takes values of one type—T1, say—as input,
and returns values of (possibly) some other type—T2, say—as output. In
Haskell this is written T1 → T2, and such a function is said to “map values
of type T1 to values of type T2.”

4 If there is more than one argument,
the notation is extended with more arrows. For example, if the intent is
that the function simple defined in the previous section has type Integer →
Integer → Integer → Integer , we can include a type signature with the
definition of simple :

simple :: Integer → Integer → Integer → Integer
simple x y z = x ∗ (y + z )

4In mathematics T1 is called the domain of the function, and T2 the range.
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Details: When writing Haskell programs using a typical text editor, there typically

will not be nice fonts and arrows as in Integer → Integer . Rather, you will have

to type Integer -> Integer.

Haskell’s type system also ensures that user-supplied type signatures
such as this one are correct. Actually, Haskell’s type system is powerful
enough to allow us to avoid writing any type signatures at all, in which case
the type system is said to infer the correct types.5 Nevertheless, judicious
placement of type signatures, as was done for simple , is a good habit, since
type signatures are an effective form of documentation and help bring pro-
gramming errors to light. In fact, it is a good habit to first write down the
type of each function you are planning to define, as a first approximation to
its full specification—a way to grasp its overall functionality before delving
into its details.

The normal use of a function is referred to as function application. For
example, simple 3 9 5 is the application of the function simple to the ar-
guments 3, 9, and 5. Some functions, such as (+), are applied using what
is known as infix syntax ; that is, the function is written between the two
arguments rather than in front of them (compare x + y to f x y).

Details: Infix functions are often called operators, and are distinguished by the
fact that they do not contain any numbers or letters of the alphabet. Thus ˆ! and
∗# : are infix operators, whereas thisIsAFunction and f9g are not (but are still
valid names for functions or other values). The only exception to this is that the
symbol ’ is considered to be alphanumeric; thus f ′ and one ′s are valid names, but
not operators.

In Haskell, when referring to an infix operator as a value, it is enclosed in paren-
theses, such as when declaring its type, as in:

(+) :: Integer → Integer → Integer

Also, when trying to understand an expression such as f x + g y, there is a
simple rule to remember: function application always has “higher precedence”
than operator application, so that f x + g y is the same as (f x ) + (g y).

Despite all of these syntactic differences, however, operators are still just functions.

5There are a few exceptions to this rule, and in the case of simple the inferred type is
actually a bit more general than that written above. Both of these points will be returned
to later.
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Exercise 1.3 Identify the well-typed expressions in the following, and, for
each, give its proper type:

[A,B ,C ]
[D , 42]
(−42,Ef )
[(’a’, 3), (’b’, 5)]
simple ’a’ ’b’ ’c’

(simple 1 2 3, simple)
["I", "love", "Euterpea"]

For those expressions that are ill-typed, explain why.

1.7 Abstraction, Abstraction, Abstraction

The title of this section is the answer to the question: “What are the three
most important ideas in programming?” Webster defines the verb “abstract”
as follows:

abstract, vt (1) remove, separate (2) to consider apart from
application to a particular instance.

In programming this happens when a pattern repeats itself and we wish to
“separate” that pattern from the “particular instances” in which it appears.
In this textbook this process is called the abstraction principle. The follow-
ing sections introduce several different kinds of abstraction, using examples
involving both simple numbers and arithmetic (things everyone should be
familiar with) as well as musical examples (that are specific to Euterpea).

1.7.1 Naming

One of the most basic ideas in programming—for that matter, in every day
life—is to name things. For example, we may wish to give a name to the
value of π, since it is inconvenient to retype (or remember) the value of π
beyond a small number of digits. In mathematics the greek letter π in fact
is the name for this value, but unfortunately we do not have the luxury of
using greek letters on standard computer keyboards and/or text editors. So
in Haskell we write:
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pi :: Double
pi = 3.141592653589793

to associate the name pi with the number 3.141592653589793. The type
signature in the first line declares pi to be a double-precision floating-point
number, which mathematically and in Haskell is distinct from an integer.6

Now the name pi can be used in expressions whenever it is in scope; it is
an abstract representation, if you will, of the number 3.141592653589793.
Furthermore, if there is ever a need to change a named value (which hopefully
will not ever happen for pi , but could certainly happen for other values), we
would only have to change it in one place, instead of in the possibly large
number of places where it is used.

For a simple musical example, note first that in music theory, a pitch
consists of a pitch class and an octave. For example, in Euterpea we simply
write (A, 4) to represent the pitch class A in the fourth octave. This par-
ticular note is called “concert A” (because it is often used as the note to
which an orchestra tunes its instruments) or “A440” (because its frequency
is 440 cycles per second). Because this particular pitch is so common, it
may be desirable to give it a name, which is easily done in Haskell, as was
done above for π:

concertA, a440 :: (PitchClass ,Octave)
concertA = (A, 4) -- concert A
a440 = (A, 4) -- A440

Details: This example demonstrates the use of program comments. Any text

to the right of “--” till the end of the line is considered to be a programmer

comment, and is effectively ignored. Haskell also permits nested comments that

have the form {-this is a comment -} and can appear anywhere in a program,

including across multiple lines.

This example demonstrates the (perhaps obvious) fact that several dif-
ferent names can be given to the same value—just as your brother John
might have the nickname “Moose.” Also note that the name concertA re-
quires more typing than (A, 4); nevertheless, it has more mnemonic value,
and, if mistyped, will more likely result in a syntax error. For example, if you
type “concrtA” by mistake, you will likely get an error saying, “Undefined

6We will have more to say about floating-point numbers later.
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variable,” whereas if you type “(A, 5)” you will not.

Details: This example also demonstrates that two names having the same type

can be combined into the same type signature, separated by a comma. Note finally,

as a reminder, that these are names of values, and thus they both begin with a

lowercase letter.

Consider now a problem whose solution requires writing some larger
expression more than once. For example:

x :: Float
x = f (pi ∗ r ∗∗ 2) + g (pi ∗ r ∗∗ 2)

Details: (∗∗) is Haskell’s floating-point exponentiation operator. Thus pi ∗ r ∗∗2
is analogous to πr2 in mathematics. (∗∗) has higher precedence than (∗) and the

other binary arithmetic operators in Haskell.

Note in the definition of x that the expression pi ∗ r ∗∗ 2 (presum-
ably representing the area of a circle whose radius is r) is repeated—it
has two instances—and thus, applying the abstraction principle, it can be
separated from these instances. From the previous examples, doing this
is straightforward—it is called naming—so we might choose to rewrite the
single equation above as two:

area = pi ∗ r ∗∗ 2
x = f area + g area

If, however, the definition of area is not intended for use elsewhere in the
program, then it is advantageous to “hide” it within the definition of x . This
will avoid cluttering up the namespace, and prevents area from clashing with
some other value named area . To achieve this, we could simply use a let
expression:

x = let area = pi ∗ r ∗∗ 2
in f area + g area

A let expression restricts the visibility of the names that it creates to the
internal workings of the let expression itself. For example, if we were to
write:
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area = 42
x = let area = pi ∗ r ∗∗ 2

in f area + g area

then there is no conflict of names—the “outer” area is completely different
from the “inner” one enclosed in the let expression. Think of the inner
area as analogous to the first name of someone in your household. If your
brother’s name is “John” he will not be confused with John Thompson who
lives down the street when you say, “John spilled the milk.”

So you can see that naming—using either top-level equations or equa-
tions within a let expression—is an example of the abstraction principle in
action.

Details: An equation such as c = 42 is called a binding. A simple rule to
remember when programming in Haskell is never to give more than one binding
for the same name in a context where the names can be confused, whether at the
top level of your program or nestled within a let expression. For example, this is
not allowed:

a = 42
a = 43

nor is this:

a = 42
b = 43
a = 44

1.7.2 Functional Abstraction

The design of functions such as simple can be viewed as the abstraction
principle in action. To see this using the example above involving the area
of a circle, suppose the original program looked like this:

x :: Float
x = f (pi ∗ r1 ∗∗ 2) + g (pi ∗ r2 ∗∗ 2)

Note that there are now two areas involved—one of a circle whose radius is
r1, the other r2. Now the expressions in parentheses have a repeating pattern
of operations. In discerning the nature of a repeating pattern it is sometimes
helpful to first identify those things that are not repeating, i.e. those things
that are changing. In the case above, it is the radius that is changing. A
repeating pattern of operations can be abstracted as a function that takes
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the changing values as arguments. Using the function name areaF (for “area
function”) we can write:

x = let areaF r = pi ∗ r ∗∗ 2
in f (areaF r1) + g (areaF r2)

This is a simple generalization of the previous example, where the function
now takes the “variable quantity”—in this case the radius—as an argument.
A very simple proof by calculation, in which areaF is unfolded where it is
used, can be given to demonstrate that this program is equivalent to the
old.

This application of the abstraction principle is called functional abstrac-
tion, since a sequence of operations is abstracted as a function such as areaF .

For a musical example, a few more concepts from Euterpea are first
introduced, concepts that are addressed more formally in the next chapter:

1. In music theory a note is a pitch combined with a duration. Duration
is measured in beats, and in Euterpea has type Dur . A note whose
duration is one beat is called a whole note, one with duration 1/2 is
called a half note, and so on. A note in Euterpea is the smallest entity,
besides a rest, that is actually a performable piece of music, and its
type is Music Pitch (other variations of this type will be introduced
in later chapters).

2. In Euterpea there are functions:

note :: Dur → Pitch → Music Pitch
rest :: Dur → Music Pitch

such that note d p is a note whose duration is d and pitch is p, and
rest d is a rest with duration d . For example, note (1/4) (A, 4) is a
quarter note concert A.

3. In Euterpea the following infix operators combine smallerMusic values
into larger ones:

(:+:) ::Music Pitch → Music Pitch → Music Pitch
(:=:) ::Music Pitch → Music Pitch → Music Pitch

Intuitively:

• m1 :+: m2 is the music value that represents the playing of m1

followed by m2.

• m1 :=: m2 is the music value that represents the playing of m1

and m2 simultaneously.
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4. Eutperepa also has a function trans :: Int → Pitch → Pitch such that
trans i p is a pitch that is i semitones (half steps, or steps on a piano)
higher than p.

Now for the example. Consider the simple melody:

note qn p1 :+: note qn p2 :+: note qn p3

where qn is a quarter note:

qn = 1/4

Suppose we wish to harmonize each note with a note played a minor third
lower. In music theory, a minor third corresponds to three semitones, and
thus the harmonized melody can be written as:

mel = (note qn p1 :=: note qn (trans (−3) p1)) :+:
(note qn p2 :=: note qn (trans (−3) p2)) :+:
(note qn p3 :=: note qn (trans (−3) p3))

Note as in the previous example a repeating pattern of operations—
namely, the operations that harmonize a single note with a note three semi-
tones below it. As before, to abstract a sequence of operations such as this,
a function can be defined that takes the “variable quantities”—in this case
the pitch—as arguments. We can take this one step further, however, by
noting that in some other context we might wish to vary the duration. Rec-
ognizing this is to anticipate the need for abstraction. Calling this function
hNote (for “harmonize note”) we can then write:

hNote ::Dur → Pitch → Music Pitch
hNote d p = note d p :=: note d (trans (−3) p)

There are three instances of the pattern inmel , each of which can be replaced
with an application of hNote. This leads to:

mel ::Music Pitch
mel = hNote qn p1 :+: hNote qn p2 :+: hNote qn p3

Again using the idea of unfolding described earlier in this chapter, it is easy
to prove that this definition is equivalent to the previous one.

As with areaF , this use of hNote is an example of functional abstraction.
In a sense, functional abstraction can be seen as a generalization of naming.
That is, area r1 is just a name for pi ∗ r1 ∗∗ 2, hNote d p is just a name
for note d p :=: note d (trans (−3) p), and so on. Stated another way,
named quantities such as area, pi , concertA, and a440 defined earlier can
be thought of as functions with no arguments.
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Of course, the definition of hNote could also be hidden within mel using
a let expression as was done in the previous example:

mel ::Music Pitch
mel = let hNote d p = note d p :=: note d (trans (−3) p)

in hNote qn p1 :+: hNote qn p2 :+: hNote qn p3

1.7.3 Data Abstraction

The value of mel is the sequential composition of three harmonized notes.
But what if in another situation we must compose together five harmonized
notes, or in other situations even more? In situations where the number of
values is uncertain, it is useful to represent them in a data structure. For the
example at hand, a good choice of data structure is a list, briefly introduced
earlier, that can have any length. The use of a data structure motivated by
the abstraction principle is one form of data abstraction.

Imagine now an entire list of pitches, whose length is not known at the
time the program is written. What now? It seems that a function is needed
to convert a list of pitches into a sequential composition of harmonized notes.
Before defining such a function, however, there is a bit more to say about
lists.

Earlier the example [C ,D ,Ef ] was given, a list of pitch classes whose
type is thus [PitchClass ]. A list with no elements is—not surprisingly—
written [ ], and is called the empty list.

To add a single element x to the front of a list xs , we write x : xs in
Haskell. (Note the naming convention used here; xs is the plural of x , and
should be read that way.) For example, C :[D ,Ef ] is the same as [C ,D ,Ef ].
In fact, this list is equivalent to C : (D : (Ef : [ ])), which can also be written
C :D : Ef : [ ] since the infix operator (:) is right associative.
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Details: In mathematics we rarely worry about whether the notation a + b + c
stands for (a+b)+c (in which case + would be “left associative”) or a+(b+c) (in
which case + would “right associative”). This is because in situations where the
parentheses are left out it is usually the case that the operator is mathematically
associative, meaning that it does not matter which interpretation is chosen. If
the interpretation does matter, mathematicians will include parentheses to make
it clear. Furthermore, in mathematics there is an implicit assumption that some
operators have higher precedence than others; for example, 2×a+ b is interpreted
as (2× a) + b, not 2× (a+ b).

In many programming languages, including Haskell, each operator is defined to

have a particular precedence level and to be left associative, right associative, or

to have no associativity at all. For arithmetic operators, mathematical convention

is usually followed; for example, 2 ∗ a + b is interpreted as (2 ∗ a) + b in Haskell.

The predefined list-forming operator (:) is defined to be right associative. Just as

in mathematics, this associativity can be overridden by using parentheses: thus

(a : b) : c is a valid Haskell expression (assuming that it is well-typed; it must be

a list of lists), and is very different from a : b : c. A way to specify the precedence

and associativity of user-defined operators will be discussed in a later chapter.

Returning now to the problem of defining a function (call it hList) to
turn a list of pitches into a sequential composition of harmonized notes, we
should first express what its type should be:

hList :: Dur → [Pitch ]→ Music Pitch

To define its proper behavior, it is helpful to consider, one by one, all possible
cases that could arise on the input. First off, the list could be empty, in which
case the sequential composition should be a Music Pitch value that has zero
duration. So:

hList d [ ] = rest 0

The other possibility is that the list is not empty—i.e. it contains at
least one element, say p, followed by the rest of the elements, say ps . In this
case the result should be the harmonization of p followed by the sequential
composition of the harmonization of ps . Thus:

hList d (p : ps) = hNote d p :+: hList d ps

Note that this part of the definition of hList is recursive—it refers to itself!
But the original problem—the harmonization of p :ps—has been reduced to
the harmonization of p (previously captured in the function hNote) and the
harmonization of ps (a slightly smaller problem than the original one).
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Combining these two equations with the type signature yields the com-
plete definition of the function hList :

hList :: Dur → [Pitch ]→ Music Pitch
hList d [ ] = rest 0
hList d (p : ps) = hNote d p :+: hList d ps

Recursion is a powerful technique that will be used many times in this
textbook. It is also an example of a general problem-solving technique where
a large problem is broken down into several smaller but similar problems;
solving these smaller problems one-by-one leads to a solution to the larger
problem.

Details: Although intuitive, this example highlights an important aspect of
Haskell: pattern matching. The left-hand sides of the equations contain pat-
terns such as [ ] and x :xs. When a function is applied, these patterns are matched
against the argument values in a fairly intuitive way ([ ] only matches the empty
list, and p : ps will successfully match any list with at least one element, while
naming the first element p and the rest of the list ps). If the match succeeds,
the right-hand side is evaluated and returned as the result of the application. If
it fails, the next equation is tried, and if all equations fail, an error results. All of
the equations that define a particular function must appear together, one after the
other.

Defining functions by pattern matching is quite common in Haskell, and you should

eventually become familiar with the various kinds of patterns that are allowed; see

Appendix D for a concise summary.

Given this definition of hList the definition of mel can be rewritten as:

mel = hList qn [p1, p2, p3 ]

We can prove that this definition is equivalent to the old via calculation:

mel = hList qn [p1, p2, p3 ]
⇒ hList qn (p1 : p2 : p3 : [ ])
⇒ hNote qn p1 :+: hList qn (p2 : p3 : [ ])
⇒ hNote qn p1 :+: hNote qn p2 :+: hList qn (p3 : [ ])
⇒ hNote qn p1 :+: hNote qn p2 :+: hNote qn p3 :+: hList qn [ ]
⇒ hNote qn p1 :+: hNote qn p2 :+: hNote qn p3 :+: rest 0

The first step above is not really a calculation, but rather a rewriting of the
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list syntax. The remaining calculations each represent an unfolding of hList .

Lists are perhaps the most commonly used data structure in Haskell,
and there is a rich library of functions that operate on them. In subse-
quent chapters lists will be used in a variety of interesting computer music
applications.

Exercise 1.4 Modify the definitions of hNote and hList so that they each
take an extra argument that specifies the interval of harmonization (rather
than being fixed at -3). Rewrite the definition of mel to take these changes
into account.

1.8 Haskell Equality vs. Euterpean Equality

The astute reader will have objected to the proof just completed, arguing
that the original version of mel :

hNote qn p1 :+: hNote qn p2 :+: hNote qn p3

is not the same as the terminus of the above proof:

hNote qn p1 :+: hNote qn p2 :+: hNote qn p3 :+: rest 0

Indeed, that reader would be right! As Haskell values, these expressions are
not equal, and if you printed each of them you would get different results.
So what happened? Did proof by calculation fail?

No, proof by calculation did not fail, since, as just pointed out, as Haskell
values these two expressions are not the same, and proof by calculation is
based on the equality of Haskell values. The problem is that a “deeper”
notion of equivalence is needed, one based on the notion of musical equality.
Adding a rest of zero duration to the beginning or end of any piece of music
should not change what we hear, and therefore it seems that the above
two expressions are musically equivalent. But it is unreasonable to expect
Haskell to figure this out for the programmer!

As an analogy, consider the use of an ordered list to represent a set
(which is unordered). The Haskell values [x1, x2 ] and [x2, x1 ] are not equal,
yet in a program that “interprets” them as sets, they are equal.

The way this problem is approached in Euterpea is to formally define a
notion of musical interpretation, from which the notion of musical equiva-
lence is defined. This leads to a kind of “algebra of music” that includes,
among others, the following axiom:
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Figure 1.1: Polyphonic vs. Contrapuntal Interpretation

m :+: rest 0 ≡ m

The operator (≡) should be read, “is musically equivalent to.” With this
axiom it is easy to see that the original two expressions above are in fact
musically equivalent.

For a more extreme example of this idea, and to entice the reader to
learn more about musical equivalence in later chapters, note that mel , given
pitches p1 = Ef , p2 = F , p3 = G , and duration d = 1/4, generates the
harmonized melody shown in Figure 1.1; we can write this concretely in
Euterpea as:

mel1 = (note (1/4) (Ef , 4) :=: note (1/4) (C , 4)) :+:
(note (1/4) (F , 4) :=: note (1/4) (D , 4)) :+:
(note (1/4) (G , 4) :=: note (1/4) (E , 4))

The definition of mel1 can then be seen as a polyphonic interpretation of the
musical phrase in Figure 1.1, where each pair of notes is seen as a harmonic
unit. In contrast, a contrapuntal interpretation sees two independent lines,
or voices, in this case the line 〈E♭,F,G〉 and the line 〈C,D,E〉. In Euterpea
we can write this as:

mel2 = (note (1/4) (Ef , 4) :+: note (1/4) (F , 4) :+: note (1/4) (G , 4))
:=:
(note (1/4) (C , 4) :+: note (1/4) (D , 4) :+: note (1/4) (E , 4))

mel1 and mel2 are clearly not equal as Haskell values. Yet if they are played,
they will sound the same—they are, in the sense described earlier, musically
equivalent. But proving these two phrases musically equivalent will require
far more than a simple axiom involving rest 0. In fact this can be done in
an elegant way, using the algebra of music developed in Chapter 11.

1.9 Code Reuse and Modularity

There does not seem to be much repetition in the last definition of hList ,
so perhaps the end of the abstraction process has been reached. In fact,
it is worth considering how much progress has been made. The original
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definition:

mel = (note qn p1 :=: note qn (trans (−3) p1)) :+:
(note qn p2 :=: note qn (trans (−3) p2)) :+:
(note qn p3 :=: note qn (trans (−3) p3))

was replaced with:

mel = hList qn [p1, p2, p3 ]

But additionally, definitions for the auxiliary functions hNote and hList were
introduced:

hNote ::Dur → Pitch → Music Pitch
hNote d p = note d p :=: note d (trans (−3) p)
hList :: Dur → [Pitch ]→ Music Pitch
hList d [ ] = rest 0
hList d (p : ps) = hNote d p :+: hList d ps

In terms of code size, the final program is actually larger than the original!
So has the program improved in any way?

Things have certainly gotten better from the standpoint of “removing re-
peating patterns,” and we could argue that the resulting program therefore
is easier to understand. But there is more. Now that auxiliary functions
such as hNote and hList have been defined, we can reuse them in other
contexts. Being able to reuse code is also called modularity, since the reused
components are like little modules, or building blocks, that can form the
foundation of many applications.7 In a later chapter, techniques will be
introduced—most notably, higher-order functions and polymorphism—for
improving the modularity of this example even more, and substantially in-
creasing the ability to reuse code.

1.10 [Advanced] Programming with Numbers

In computer music programming, it is often necessary to program with num-
bers. For example, it is often convenient to represent pitch on a simple ab-
solute scale using integer values. And when computing with analog signals
that represent a particular sound wave, it is necessary to use floating point
numbers as an approximation to the reals. So it is a good idea to under-
stand precisely how numbers are represented inside a computer, and within
a particular language such as Haskell.

7“Code reuse” and “modularity” are important software engineering principles.
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In mathematics there are many different kinds of number systems. For
example, there are integers, natural numbers (i.e. non-negative integers),
real numbers, rational numbers, and complex numbers. These number sys-
tems possess many useful properties, such as the fact that multiplication and
addition are commutative, and that multiplication distributes over addition.
You have undoubtedly learned many of these properties in your studies, and
have used them often in algebra, geometry, trigonometry, physics, and so
on.

Unfortunately, each of these number systems places great demands on
computer systems. In particular, a number can in general require an arbi-
trary amount of memory to represent it. Clearly, for example, an irrational
number such as π cannot be represented exactly; the best we can do is
approximate it, or possibly write a program that computes it to whatever
(finite) precision is needed in a given application. But even integers (and
therefore rational numbers) present problems, since any given integer can
be arbitrarily large.

Most programming languages do not deal with these problems very well.
In fact, most programming languages do not have exact forms of many of
these number systems. Haskell does slightly better than most, in that it
has exact forms of integers (the type Integer) as well as rational numbers
(the type Rational, defined in the Ratio Library). But in Haskell and most
other languages there is no exact form of real numbers, for example, which
are instead approximated by floating-point numbers with either single-word
precision (Float in Haskell) or double-word precision (Double). Even worse,
the behavior of arithmetic operations on floating-point numbers can vary
somewhat depending on what kind of computer is being used, although
hardware standardization in recent years has reduced the degree of this
problem.

The bottom line is that, as simple as they may seem, great care must be
taken when programming with numbers. Many computer errors, some quite
serious and renowned, were rooted in numerical incongruities. The field of
mathematics known as numerical analysis is concerned precisely with these
problems, and programming with floating-point numbers in sophisticated
applications often requires a good understanding of numerical analysis to
devise proper algorithms and write correct programs.

As a simple example of this problem, consider the distributive law, ex-
pressed here as a calculation in Haskell, and used earlier in this chapter in
calculations involving the function simple :
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a ∗ (b + c)⇒ a ∗ b + a ∗ c
For most floating-point numbers, this law is perfectly valid. For example,
in the GHC implementation of Haskell, the expressions pi ∗ (3 + 4) :: Float
and pi ∗ 3 + pi ∗ 4 :: Float both yield the same result: 21.99115. But funny
things can happen when the magnitude of b+c differs significantly from the
magnitude of either b or c. For example, the following two calculations are
from GHC:

5 ∗ (−0.123456 + 0.123457) :: Float ⇒ 4.991889e − 6
5 ∗ (−0.123456) + 5 ∗ (0.123457) :: Float ⇒ 5.00679e − 6

Although the discrepancy here is small, its very existence is worrisome, and
in certain situations it could be disastrous. The precise behavior of floating-
point numbers will not be discussed further in this textbook. Just remember
that they are approximations to the real numbers. If real-number accuracy
is important to your application, further study of the nature of floating-point
numbers is probably warranted.

On the other hand, the distributive law (and many others) is valid in
Haskell for the exact data types Integer and Ratio Integer (i.e. rationals).
Although the representation of an Integer in Haskell is not normally some-
thing to be concerned about, it should be clear that the representation must
be allowed to grow to an arbitrary size. For example, Haskell has no problem
with the following number:

veryBigNumber :: Integer
veryBigNumber = 43208345720348593219876512372134059

and such numbers can be added, multiplied, etc. without any loss of ac-
curacy. However, such numbers cannot fit into a single word of computer
memory, most of which are limited to 32 or 64 bits. Worse, since the com-
puter system does not know ahead of time exactly how many words will be
required, it must devise a dynamic scheme to allow just the right number
of words to be used in each case. The overhead of implementing this idea
unfortunately causes programs to run slower.

For this reason, Haskell (and most other languages) provides another
integer data type called Int that has maximum and minimum values that
depend on the word-size of the particular computer being used. In other
words, every value of type Int fits into one word of memory, and the prim-
itive machine instructions for binary numbers can be used to manipulate
them efficiently.8 Unfortunately, this means that overflow or underflow er-

8The Haskell Report requires that every implementation support Ints at least in the
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rors could occur when an Int value exceeds either the maximum or minimum
values. Sadly, most implementations of Haskell (as well as most other lan-
guages) do not tell you when this happens. For example, in GHC running
on a 32-bit processor, the following Int value:

i :: Int
i = 1234567890

works just fine, but if you multiply it by two, GHC returns the value
−1825831516! This is because twice i exceeds the maximum allowed value,
so the resulting bits become nonsensical,9 and are interpreted in this case
as a negative number of the given magnitude.

This is alarming! Indeed, why should anyone ever use Int when Integer is
available? The answer, as implied earlier, is efficiency, but clearly care should
be taken when making this choice. If you are indexing into a list, for example,
and you are confident that you are not performing index calculations that
might result in the above kind of error, then Int should work just fine,
since a list longer than 231 will not fit into memory anyway! But if you
are calculating the number of microseconds in some large time interval, or
counting the number of people living on earth, then Integer would most
likely be a better choice. Choose your number data types wisely!

In this textbook the numeric data types Integer , Int , Float , Double,
Rational , and Complex will be used for a variety of different applications; for
a discussion of the other number types, consult the Haskell Report. As these
data types are used, there will be little discussion about their properties—
this is not, after all, a book on numerical analysis—but a warning will be
cast whenever reasoning about, for example, floating-point numbers, in a
way that might not be technically sound.

range −229 to 229 −1, inclusive. The GHC implementation running on a 32-bit processor,
for example, supports the range −231 to 231 − 1.

9Actually, these bits are perfectly sensible in the following way: the 32-bit bi-
nary representation of i is 01001001100101100000001011010010, and twice that is
10010011001011000000010110100100. But the latter number is seen as negative be-
cause the 32nd bit (the highest-order bit on the CPU on which this was run) is a one,
which means it is a negative number in “twos-complement” representation. The twos-
complement of this number is in turn 01101100110100111111101001011100, whose decimal
representation is 1825831516.



Chapter 2

Simple Music

module Euterpea.Music.Note.Music where
infixr 5 :+:, :=:

The previous chapters introduced some of the fundamental ideas of func-
tional programming in Haskell. Also introduced were several of Euterpea’s
functions and operators, such as note, rest , (:+:), (:=:), and trans . This
chapter will reveal the actual definitions of these functions and operators,
thus exposing Euterpea’s underlying structure and overall design at the note
level. In addition, a number of other musical ideas will be developed, and
in the process more Haskell features will be introduced as well.

2.1 Preliminaries

Sometimes it is convenient to use a built-in Haskell data type to directly
represent some concept of interest. For example, we may wish to use Int to
represent octaves, where by convention octave 4 corresponds to the octave
containing middle C on the piano. We can express this in Haskell using a
type synonym:

type Octave = Int

A type synonym does not create a new data type—it just gives a new name
to an existing type. Type synonyms can be defined not just for atomic
types such as Int , but also for structured types such as pairs. For example,
as discussed in the last chapter, in music theory a pitch is defined as a pair,
consisting of a pitch class and an octave. Assuming the existence of a data
type called PitchClass (which we will return to shortly), we can write the

28
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following type synonym:

type Pitch = (PitchClass ,Octave)

For example, concert A (i.e. A440) corresponds to the pitch (A, 4) :: Pitch,
and the lowest and highest notes on a piano correspond to (A, 0) ::Pitch and
(C , 8) :: Pitch, respectively.

Another important musical concept is duration. Rather than use either
integers or floating-point numbers, Euterpea uses rational numbers to denote
duration:

type Dur = Rational

Rational is the data type of rational numbers expressed as ratios of Integers
in Haskell. The choice of Rational is somewhat subjective, but is justified
by three observations: (1) many durations are expressed as ratios in music
theory (5:4 rhythm, quarter notes, dotted notes, and so on), (2) Rational
numbers are exact (unlike floating point numbers), which is important in
many computer music applications, and (3) irrational durations are rarely
needed.

Rational numbers in Haskell are printed by GHC in the form n % d ,
where n is the numerator, and d is the denominator. Even a whole number,
say the number 42, will print as 42%1 if it is a Rational number. To create
a Rational number in a program, however, once it is given the proper type,
we can use the normal division operator, as in the following definition of a
quarter note:

qn ::Dur
qn = 1/4 -- quarter note

So far so good. But what about PitchClass? We might try to use integers
to represent pitch classes as well, but this is not very elegant—ideally we
would like to write something that looks more like the conventional pitch
class names C, C♯, D♭, D, etc. The solution is to use an algebraic data type
in Haskell:

data PitchClass = Cff | Cf | C | Dff | Cs | Df | Css | D | Eff | Ds
| Ef | Fff | Dss | E | Ff | Es | F | Gff | Ess | Fs
| Gf | Fss | G | Aff | Gs | Af | Gss | A | Bff | As
| Bf | Ass | B | Bs | Bss
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Details: All of the names to the right of the equal sign in a data declaration
are called constructors, and must be capitalized. In this way they are syntactically
distinguished from ordinary values. This distinction is useful since only constructors
can be used in the pattern matching that is part of a function definition, as will
be described shortly.

The PitchClass data type declaration essentially enumerates 35 pitch
class names (five for each of the note names A through G). Note that both
double-sharps and double-flats are included, resulting in many enharmonics
(i.e., two notes that “sound the same,” such as G♯ and A♭).

(The order of the pitch classes may seem a bit odd, but the idea is that
if a pitch class pc1 is to the left of a pitch class pc2, then pc1’s pitch is “lower
than” that of pc2. This idea will be formalized and exploited in Chapter 7.1.)

Keep in mind that PitchClass is a completely new, user-defined data
type that is not equal to any other. This is what distinguishes a data
declaration from a type declaration. As another example of the use of a
data declaration to define a simple enumerated type, Haskell’s Boolean data
type, called Bool , is predefined in Haskell simply as:

data Bool = False | True

2.2 Notes, Music, and Polymorphism

We can of course define other data types for other purposes. For example,
we will want to define the notion of a note and a rest. Both of these can
be thought of as “primitive” musical values, and thus as a first attempt we
might write:

data Primitive = Note Dur Pitch
| Rest Dur

Analogously to our previous data type declarations, the above declaration
says that a Primitive is either a Note or a Rest . However, it is different in
that the constructors Note and Rest take arguments, like functions do. In
the case of Note, it takes two arguments, whose types are Dur and Pitch,
respectively, whereas Rest takes one argument, a value of type Dur . In other
words, the types of Note and Rest are:

Note ::Dur → Pitch → Primitive
Rest ::Dur → Primitive
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For example, Note qn a440 is concert A played as a quarter note, and Rest 1
is a whole-note rest.

This definition is not completely satisfactory, however, because we may
wish to attach other information to a note, such as its loudness, or some
other annotation or articulation. Furthermore, the pitch itself may actually
be a percussive sound, having no true pitch at all. To resolve this, Euterpea
uses an important concept in Haskell, namely polymorphism—the ability
to parameterize, or abstract, over types (poly means many and morphism
refers to the structure, or form, of objects).

Primitive can be redefined as a polymorphic data type as follows. Instead
of fixing the type of the pitch of a note, it is left unspecified through the use
of a type variable:

data Primitive a = Note Dur a
| Rest Dur

Note that the type variable a is used as an argument to Primitive, and
then used in the body of the declaration—just like a variable in a function.
This version of Primitive is more general than the previous version—indeed,
note that Primitive Pitch is the same as (or, technically, is isomorphic to)
the previous version of Primitive. But additionally, Primitive is now more
flexible than the previous version, since, for example, we can add loudness
by pairing loudness with pitch, as in Primitive (Pitch,Loudness). Other
concrete instances of this idea will be introduced later.

Details: Type variables such as a above must begin with a lower-case letter,

to distinguish them from concrete types such as Dur or Pitch . Since Primitive

takes an argument, it is called a type constructor, wherease Note and Rest are

just called constructors (or value constructors).

Another way to interpret this data declaration is to say that for any type
a, this declaration declares the types of its constructors to be:

Note ::Dur → a → Primitive a
Rest ::Dur → Primitive a

Even though Note and Rest are called data constructors, they are still func-
tions, and they have a type. Since they both have type variables in their
type signatures, they are examples of polymorphic functions.

It is helpful to think of polymorphism as applying the abstraction prin-
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ciple at the type level—indeed it is often called type abstraction. Many more
examples of both polymorphic functions and polymorphic data types will be
explored in detail in Chapter 3.

So far Euterpea’s primitive notes and rests have been introduced—but
how do we combine many notes and rests into a larger composition? To
achieve this, Euterpea defines another polymorphic data type, perhaps the
most important data type used in this textbook, which defines the funda-
mental structure of a note-level musical entity:

data Music a =
Prim (Primitive a) -- primitive value
| Music a :+:Music a -- sequential composition
| Music a :=:Music a -- parallel composition
| Modify Control (Music a) -- modifier

Following the reasoning above, the types of these constructors are:

Prim :: Primitive a → Music a
(:+:) ::Music a → Music a → Music a
(:=:) ::Music a → Music a → Music a
Modify :: Control → Music a → Music a

These four constructors then are also polymorphic functions.

Details: Note the use of the infix constructors (:+:) and (:=:). Infix constructors
are just like infix operators in Haskell, but they must begin with a colon. This
syntactic distinction makes it clear when pattern matching is intended, and is
analogous to the distinction between ordinary names (which must begin with a
lower-case character) and constructor names (which must begin with an upper-
case character).

The observant reader will also recall that at the very beginning of this chapter—
corresponding to the module containing all the code in this chapter—the following
line appeared:

infixr 5 :+:, :=:

This is called a fixity declaration. The “r” after the word “infix” means that the

specified operators—in this case (:+:) and (:=:)—are to have right associativity,

and the “5” specifies their precedence level (these operators will bind more tightly

than an operator with a lower precedence).
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The Music data type declaration essentially says that a value of type
Music a has one of four possible forms:

• Prim p, where p is a primitive value of type Primitive a, for some
type a. For example:

a440m ::Music Pitch
a440m = Prim (Note qn a440 )

is the musical value corresponding to a quarter-note rendition of con-
cert A.

• m1 :+:m2 is the sequential composition of m1 and m2; i.e. m1 and m2

are played in sequence.

• m1 :=:m2 is the parallel composition of m1 and m2; i.e. m1 and m2 are
played simultaneously. The duration of the result is the duration of
the longer of m1 and m2.

(Recall that these last two operators were introduced in the last chap-
ter. You can see now that they are actually constructors of an algebraic
data type.)

• Modify cntrl m is an “annotated” version of m in which the control
parameter cntrl specifies some way in which m is to be modified.

Details: Note that Music a is defined in terms of Music a, and thus the data

type is said to be recursive (analogous to a recursive function). It is also often

called an inductive data type, since it is, in essence, an inductive definition of an

infinite number of values, each of which can be arbitrarily complex.

It is convenient to represent these musical ideas as a recursive datatype
because it allows us to not only construct musical values, but also take
them apart, analyze their structure, print them in a structure-preserving
way, transform them, interpret them for performance purposes, and so on.
Many examples of these kinds of processes will be seen in this textbook.

The Control data type is used by the Modify constructor to annotate a
Music value with a tempo change, a transposition, a phrase attribute, a player
name, or an instrument. This data type is unimportant at the moment, but
for completeness here is its full definition:
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data Control =
Tempo Rational -- scale the tempo
| Transpose AbsPitch -- transposition
| Instrument InstrumentName -- instrument label
| Phrase [PhraseAttribute ] -- phrase attributes
| Player PlayerName -- player label
| KeySig PitchClass Mode -- key signature and mode

type PlayerName = String
data Mode = Major | Minor

AbsPitch (“absolute pitch,” to be defined in Section 2.4) is just a type
synonym for Int . Instrument names are borrowed from the General MIDI
standard [Ass13a, Ass13b], and are captured as an algebraic data type in Fig-
ure 2.1. Phrase attributes and the concept of a “player” are closely related,
but a full explanation is deferred until Chapter 8. The KeySig constructor
attaches a key signature to a Music value, and is different conceptually from
transposition.

2.3 Convenient Auxiliary Functions

For convenience, and in anticipation of their frequent use, a number of func-
tions are defined in Euterpea to make it easier to write certain kinds of
musical values. For starters:

note :: Dur → a → Music a
note d p = Prim (Note d p)

rest :: Dur → Music a
rest d = Prim (Rest d)

tempo :: Dur → Music a → Music a
tempo r m = Modify (Tempo r) m

transpose :: AbsPitch → Music a → Music a
transpose i m = Modify (Transpose i) m

instrument :: InstrumentName → Music a → Music a
instrument i m = Modify (Instrument i) m

phrase :: [PhraseAttribute ]→ Music a → Music a
phrase pa m = Modify (Phrase pa) m

player :: PlayerName → Music a → Music a
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data InstrumentName =
AcousticGrandPiano | BrightAcousticPiano | ElectricGrandPiano
| HonkyTonkPiano | RhodesPiano | ChorusedPiano
| Harpsichord | Clavinet | Celesta
| Glockenspiel | MusicBox | Vibraphone
| Marimba | Xylophone | TubularBells
| Dulcimer | HammondOrgan | PercussiveOrgan
| RockOrgan | ChurchOrgan | ReedOrgan
| Accordion | Harmonica | TangoAccordion
| AcousticGuitarNylon | AcousticGuitarSteel | ElectricGuitarJazz
| ElectricGuitarClean | ElectricGuitarMuted | OverdrivenGuitar
| DistortionGuitar | GuitarHarmonics | AcousticBass
| ElectricBassFingered | ElectricBassPicked | FretlessBass
| SlapBass1 | SlapBass2 | SynthBass1
| SynthBass2 | Violin | Viola
| Cello | Contrabass | TremoloStrings
| PizzicatoStrings | OrchestralHarp | Timpani
| StringEnsemble1 | StringEnsemble2 | SynthStrings1
| SynthStrings2 | ChoirAahs | VoiceOohs
| SynthVoice | OrchestraHit | Trumpet
| Trombone | Tuba | MutedTrumpet
| FrenchHorn | BrassSection | SynthBrass1
| SynthBrass2 | SopranoSax | AltoSax
| TenorSax | BaritoneSax | Oboe
| Bassoon | EnglishHorn | Clarinet
| Piccolo | Flute | Recorder
| PanFlute | BlownBottle | Shakuhachi
|Whistle | Ocarina | Lead1Square
| Lead2Sawtooth | Lead3Calliope | Lead4Chiff
| Lead5Charang | Lead6Voice | Lead7Fifths
| Lead8BassLead | Pad1NewAge | Pad2Warm
| Pad3Polysynth | Pad4Choir | Pad5Bowed
| Pad6Metallic | Pad7Halo | Pad8Sweep
| FX1Train | FX2Soundtrack | FX3Crystal
| FX4Atmosphere | FX5Brightness | FX6Goblins
| FX7Echoes | FX8SciFi | Sitar
| Banjo | Shamisen | Koto
| Kalimba | Bagpipe | Fiddle
| Shanai | TinkleBell | Agogo
| SteelDrums |Woodblock | TaikoDrum
| MelodicDrum | SynthDrum | ReverseCymbal
| GuitarFretNoise | BreathNoise | Seashore
| BirdTweet | TelephoneRing | Helicopter
| Applause | Gunshot | Percussion
| Custom String

Figure 2.1: General MIDI Instrument Names



CHAPTER 2. SIMPLE MUSIC 36

player pn m = Modify (Player pn) m

keysig :: PitchClass → Mode → Music a → Music a
keysig pc mo m = Modify (KeySig pc mo) m

Note that each of these functions is polymorphic, a trait inherited from the
data types that it uses. Also recall that the first two of these functions were
used in an example in the last chapter.

We can also create simple names for familiar notes, durations, and rests,
as shown in Figures 2.2 and 2.3. Despite the large number of them, these
names are sufficiently “unusual” that name clashes are unlikely.

Details: Figures 2.2 and 2.3 demonstrate that at the top level of a program,
more than one equation can be placed on one line, as long as they are separated
by a semicolon. This allows us to save vertical space on the page, and is useful
whenever each line is relatively short. The semicolon is not needed at the end of
a single equation, or at the end of the last equation on a line. This convenient
feature is part of Haskell’s layout rule, and will be explained in more detail later.

More than one equation can also be placed on one line in a let expression, as
demonstrated below:

let x = 1; y = 2
in x + y

2.3.1 A Simple Example

As a simple example, suppose we wish to generate a ii-V-I chord progression
in a particular major key. In music theory, such a chord progression begins
with a minor chord on the second degree of the major scale, followed by a
major chord on the fifth degree, and ending in a major chord on the first
degree. We can write this in Euterpea, using triads in the key of C major,
as follows:

t251 ::Music Pitch
t251 = let dMinor = d 4 wn :=: f 4 wn :=: a 4 wn

gMajor = g 4 wn :=: b 4 wn :=: d 5 wn
cMajor = c 4 bn :=: e 4 bn :=: g 4 bn

in dMinor :+: gMajor :+: cMajor
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cff , cf , c, cs , css , dff , df , d , ds , dss , eff , ef , e, es , ess ,fff ,ff , f ,
fs , fss , gff , gf , g, gs , gss , aff , af , a, as , ass , bff , bf , b, bs , bss ::
Octave → Dur → Music Pitch

cff o d = note d (Cff , o); cf o d = note d (Cf , o)
c o d = note d (C , o); cs o d = note d (Cs , o)
css o d = note d (Css , o); dff o d = note d (Dff , o)
df o d = note d (Df , o); d o d = note d (D , o)
ds o d = note d (Ds , o); dss o d = note d (Dss , o)
eff o d = note d (Eff , o); ef o d = note d (Ef , o)
e o d = note d (E , o); es o d = note d (Es , o)
ess o d = note d (Ess , o);fff o d = note d (Fff , o)
ff o d = note d (Ff , o); f o d = note d (F , o)
fs o d = note d (Fs , o); fss o d = note d (Fss , o)
gff o d = note d (Gff , o); gf o d = note d (Gf , o)
g o d = note d (G, o); gs o d = note d (Gs , o)
gss o d = note d (Gss , o); aff o d = note d (Aff , o)
af o d = note d (Af , o); a o d = note d (A, o)
as o d = note d (As , o); ass o d = note d (Ass , o)
bff o d = note d (Bff , o); bf o d = note d (Bf , o)
b o d = note d (B , o); bs o d = note d (Bs , o)
bss o d = note d (Bss , o)

Figure 2.2: Convenient Note Names
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bn,wn, hn, qn, en , sn, tn, sfn, dwn , dhn ,
dqn, den , dsn, dtn, ddhn , ddqn , dden ::Dur

bnr ,wnr , hnr , qnr , enr , snr , tnr , sfnr , dwnr , dhnr ,
dqnr , denr , dsnr , dtnr , ddhnr , ddqnr , ddenr ::Music Pitch

bn = 2; bnr = rest bn -- brevis rest
wn = 1; wnr = rest wn -- whole note rest
hn = 1/2; hnr = rest hn -- half note rest
qn = 1/4; qnr = rest qn -- quarter note rest
en = 1/8; enr = rest en -- eighth note rest
sn = 1/16; snr = rest sn -- sixteenth note rest
tn = 1/32; tnr = rest tn -- thirty-second note rest
sfn = 1/64; sfnr = rest sfn -- sixty-fourth note rest

dwn = 3/2; dwnr = rest dwn -- dotted whole note rest
dhn = 3/4; dhnr = rest dhn -- dotted half note rest
dqn = 3/8; dqnr = rest dqn -- dotted quarter note rest
den = 3/16; denr = rest den -- dotted eighth note rest
dsn = 3/32; dsnr = rest dsn -- dotted sixteenth note rest
dtn = 3/64; dtnr = rest dtn -- dotted thirty-second note rest

ddhn = 7/8; ddhnr = rest ddhn -- double-dotted half note rest
ddqn = 7/16; ddqnr = rest ddqn -- double-dotted quarter note rest
dden = 7/32; ddenr = rest dden -- double-dotted eighth note rest

Figure 2.3: Convenient Duration and Rest Names
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Details: Note that more than one equation is allowed in a let expression, just like
at the top level of a program. The first characters of each equation, however, must
line up vertically, and if an equation takes more than one line then the subsequent
lines must be to the right of the first characters. For example, this is legal:

let a = aLongName
+ anEvenLongerName

b = 56
in ...

but neither of these are:

let a = aLongName
+ anEvenLongerName
b = 56

in ...

let a = aLongName
+ anEvenLongerName

b = 56
in ...

(The second line in the first example is too far to the left, as is the third line in
the second example.)

Although this rule, called the layout rule, may seem a bit ad hoc, it avoids having
to use special syntax (such as a semicolon) to denote the end of one equation and
the beginning of the next, thus enhancing readability. In practice, use of layout is
rather intuitive. Just remember two things:

First, the first character following let (and a few other keywords that will be
introduced later) is what determines the starting column for the set of equations
being written. Thus we can begin the equations on the same line as the keyword,
the next line, or whatever.

Second, be sure that the starting column is further to the right than the start-

ing column associated with any immediately surrounding let clause (otherwise it

would be ambiguous). The “termination” of an equation happens when something

appears at or to the left of the starting column associated with that equation.

We can play this simple example using Euterpea’s play function by sim-
ply typing:

play t251

at the GHCi command line. Default instruments and tempos are used to
convert t251 into MIDI and then play the result through your computer’s
standard sound card.
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Details: It is important when using play that the type of its argument is made
clear. In the case of t251 , it is clear from the type signature in its definition. But
for reasons to be explained in Chapter 7, if we write even something very simple
such as play (note qn (C , 4)), Haskell cannot infer exactly what kind of number
4 is, and therefore cannot infer that (C , 4) is intended to be a Pitch. We can get
around this either by writing:

m :: Pitch
m = note qn (C , 4)

in which case play m will work just fine, or we can include the type signature

“in-line” with the expression, as in play (note qn ((C , 4) :: Pitch)).

Exercise 2.1 The above example is fairly concrete, in that, for one, it is
rooted in C major, and furthermore it has a fixed tempo. Define a function
twoFiveOne :: Pitch → Dur → Music Pitch such that twoFiveOne p d
constructs a ii-V-I chord progression in the key whose major scale begins on
the pitch p (i.e. the first degree of the major scale on which the progression
is being constructed), where the duration of the first two chords is each d ,
and the duration of the last chord is 2 ∗ d .

To verify your code, prove by calculation that twoFiveOne (C , 4) wn =
t251 .

Exercise 2.2 The PitchClass data type implies the use of standardWestern
harmony, in particular the use of a twelve-tone equal temperament scale.
But there are many other scale possibilities. For example, the pentatonic
blues scale consists of five notes (thus “pentatonic”) and, in the key of
C, approximately corresponds to the notes C, E♭, F, G, and B♭. More
abstractly, let’s call these the root, minor third, fourth, fifth, and minor
seventh, respectively. Your job is to:

1. Define a new algebraic data type called BluesPitchClass that captures
this scale (for example, you may wish to use the constructor names
Ro, MT , Fo, Fi , and MS ).

2. Define a type synonym BluesPitch, akin to Pitch.

3. Define auxiliary functions ro, mt , fo, fi , andms , akin to those in Figure
2.2, that make it easy to construct notes of type Music BluesPitch.



CHAPTER 2. SIMPLE MUSIC 41

4. In order to play a value of type Music BluesPitch using MIDI, it will
have to be converted into a Music Pitch value. Define a function
fromBlues :: Music BluesPitch → Music Pitch to do this, using the
“approximate” translation described at the beginning of this exercise.

Hint: To do this properly, you will have to pattern match against the
Music value, something like this:

fromBlues (Prim (Note d p)) = ...
fromBlues (Prim (Rest d)) = ...
fromBlues (m1 :+:m2) = ...
fromBlues (m1 :=:m2) = ...
fromBlues (Modify ...) = ...

5. Write out a few melodies of type Music BluesPitch, and play them
using fromBlues and play .

2.4 Absolute Pitches

Treating pitches simply as integers is useful in many settings, so Euterpea
uses a type synonym to define the concept of an “absolute pitch:”

type AbsPitch = Int

The absolute pitch of a (relative) pitch can be defined mathematically as 12
times the octave, plus the index of the pitch class. We can express this in
Haskell as follows:

absPitch :: Pitch → AbsPitch
absPitch (pc, oct) = 12 ∗ oct + pcToInt pc

Details: Note the use of pattern matching to match the argument of absPitch

to a pair.

pcToInt is a function that converts a particular pitch class to an index,
easily but tediously expressed as shown in Figure 2.4. But there is a subtlety:
according to music theory convention, pitches are assigned integers in the
range 0 to 11, i.e. modulo 12, starting on pitch class C. In other words, the
index of C is 0, C♭ is 11, and B♯ is 0. However, that would mean the absolute
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pcToInt :: PitchClass → Int

pcToInt Cff = −2; pcToInt Dff = 0; pcToInt Eff = 2
pcToInt Cf = −1; pcToInt Df = 1; pcToInt Ef = 3
pcToInt C = 0; pcToInt D = 2; pcToInt E = 4
pcToInt Cs = 1; pcToInt Ds = 3; pcToInt Es = 5
pcToInt Css = 2; pcToInt Dss = 4; pcToInt Ess = 6

pcToInt Fff = 3; pcToInt Gff = 5; pcToInt Aff = 7
pcToInt Ff = 4; pcToInt Gf = 6; pcToInt Af = 8
pcToInt F = 5; pcToInt G = 7; pcToInt A = 9
pcToInt Fs = 6; pcToInt Gs = 8; pcToInt As = 10
pcToInt Fss = 7; pcToInt Gss = 9; pcToInt Ass = 11

pcToInt Bff = 9
pcToInt Bf = 10
pcToInt B = 11
pcToInt Bs = 12
pcToInt Bss = 13

Figure 2.4: Converting Pitch Classes to Integers

pitch of (C , 4), say, would be 48, whereas (Cf , 4) would be 59. Somehow the
latter does not seem right—47 would be a more logical choice. Therefore
the definition in Figure 2.4 is written in such a way that the wrap-round
does not happen, i.e. numbers outside the range 0 to 11 are used. With this
definition, absPitch (Cf , 4) yields 47, as desired.
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Details: The repetition of “pcToInt” above can be avoided by using a Haskell
case expression, resulting in a more compact definition:

pcToInt :: PitchClass → Int
pcToInt pc = case pc of
Cff → −2;Cf → −1;C → 0; Cs → 1; Css → 2;
Dff → 0; Df → 1; D → 2; Ds → 3; Dss → 4;
Eff → 2; Ef → 3; E → 4; Es → 5; Ess → 6;
Fff → 3; Ff → 4; F → 5; Fs → 6; Fss → 7;
Gff → 5; Gf → 6; G → 7; Gs → 8; Gss → 9;
Aff → 7; Af → 8; A → 9; As → 10;Ass → 11;
Bff → 9; Bf → 10; B → 11;Bs → 12;Bss → 13

As you can see, a case expression allows multiple pattern-matches on an expression
without using equations. Note that layout applies to the body of a case expression,
and can be overriden as before using a semicolon. (As in a function type signature,
the right-pointing arrow in a case expression must be typed as “->” on your
computer keyboard.)

The body of a case expression observes layout just as a let expression, including

the fact that semicolons can be used, as above, to place more than one pattern

match on the same line.

Converting an absolute pitch to a pitch is a bit more tricky, because of
enharmonic equivalences. For example, the absolute pitch 15 might corre-
spond to either (Ds , 1) or (Ef , 1). Euterpea takes the approach of always
returning a sharp in such ambiguous cases:

pitch ::AbsPitch → Pitch
pitch ap =

let (oct ,n) = divMod ap 12
in ([C ,Cs ,D ,Ds ,E ,F ,Fs ,G ,Gs ,A,As ,B ] !! n, oct)

Details: (!!) is Haskell’s zero-based list-indexing function; list !! n returns the

(n +1)th element in list . divMod x n returns a pair (q, r), where q is the integer

quotient of x divided by n, and r is the value of x modulo n.

Given pitch and absPitch, it is now easy to define a function trans that
transposes pitches:
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trans :: Int → Pitch → Pitch
trans i p = pitch (absPitch p + i)

With this definition, all of the operators and functions introduced in the
previous chapter have been covered.

Exercise 2.3 Show that abspitch (pitch ap) = ap, and, up to enharmonic
equivalences, pitch (abspitch p) = p.

Exercise 2.4 Show that trans i (trans j p) = trans (i + j ) p.

Exercise 2.5 Transpose is part of the Control data type, which in turn is
part of the Music data type. Its use in transposing a Music value is thus
a kind of “annotation”—it doesn’t really change the Music value, it just
annotates it as something that is transposed.

Define instead a recursive function transM ::AbsPitch → Music Pitch →
Music Pitch that actually changes each note in a Music Pitch value by
transposing it by the interval represented by the first argument.

Hint: To do this properly, you will have to pattern match against the
Music value, something like this:

transM ap (Prim (Note d p)) = ...
transM ap (Prim (Rest d)) = ...
transM ap (m1 :+:m2) = ...
transM ap (m1 :=:m2) = ...
transM ap (Modify ...) = ...



Chapter 3

Polymorphic and
Higher-Order Functions

Several examples of polymorphic data types were introduced in the last
couple of chapters. In this chapter the focus is on polymorphic functions,
which are most commonly defined over polymorphic data types.

The already familiar list is the protoypical example of a polymorphic data
type, and it will be studied in depth in this chapter. Although lists have no
direct musical connection, they are perhaps the most commonly used data
type in Haskell, and have many applications in computer music program-
ming. But in addition the Music data type is polymorphic, and several new
functions that operate on it polymorphiccally will also be defined,

(A more detailed discussion of predefined polymorphic functions that
operate on lists can be found in Appendix A.)

This chapter also introduces higher-order functions, which are functions
that take one or more functions as arguments or return a function as a
result (functions can also be placed in data structures). Higher-order func-
tions permit the elegant and concise expression of many musical concepts.
Together with polymorphism, higher-order functions substantially increase
the programmer’s expressive power and ability to reuse code.

Both of these new ideas follow naturally the foundations that have al-
ready been established.

45
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3.1 Polymorphic Types

In previous chapters, examples of lists containing several different kinds of
elements—integers, characters, pitch classes, and so on—were introduced,
and we can well imagine situations requiring lists of other element types.
Sometimes, however, it is not necessary to be so particular about the type
of the elements. For example, suppose we wish to define a function length
that determines the number of elements in a list. It does not really matter
whether the list contains integers, pitch classes, or even other lists—we can
imagine computing the length in exactly the same way in each case. The
obvious definition is:

length [ ] = 0
length (x : xs) = 1 + length xs

This recursive definition is self-explanatory. Indeed, we can read the equa-
tions as saying: “The length of the empty list is 0, and the length of a list
whose first element is x and remainder is xs is 1 plus the length of xs .”

But what should the type of length be? Intuitively, we would like to say
that, for any type a, the type of length is [a ] → Integer . In mathematics
we might write this as:

length :: (∀ a) [a ]→ Integer

But in Haskell this is written simply as:

length :: [a ]→ Integer

In other words, the universal quantification of the type variable a is implicit.

Details: Generic names for types, such as a above, are called type variables, and

are uncapitalized to distinguish them from concrete types such as Integer .

So length can be applied to a list containing elements of any type. For
example:

length [1, 2, 3] =⇒ 3
length [C ,D ,Ef ] =⇒ 3
length [ [1], [ ], [2, 3, 4]] =⇒ 3

Note that the type of the argument to length in the last example is
[[Integer ] ]; that is, a list of lists of integers.

Here are two other examples of polymorphic list functions, which happen
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to be predefined in Haskell:

head :: [a ]→ a
head (x : ) = x

tail :: [a ]→ [a ]
tail ( : xs) = xs

Details: The on the left-hand side of these equations is called a wildcard

pattern. It matches any value, and binds no variables. It is useful as a way of

documenting the fact that we do not care about the value in that part of the

pattern. Note that we could (perhaps should) have used a wildcard in place of the

variable x in the definition of length.

These two functions take the “head” and “tail,” respectively, of any
non-empty list. For example:

head [1, 2, 3]⇒ 1
head [C ,D ,Ef ]⇒ C
tail [1, 2, 3] ⇒ [2, 3]
tail [C ,D ,Ef ] ⇒ [D ,Ef ]

Note that, for any non-empty list xs, head and tail obey the following law:

head xs : tail xs = xs

Functions such as length, head , and tail are said to be polymorphic.
Polymorphic functions arise naturally when defining functions on lists and
other polymorphic data types, including the Music data type defined in the
last chapter.

3.2 Abstraction Over Recursive Definitions

Given a list of pitches, suppose we wish to convert each pitch into an absolute
pitch. We could define a function:

toAbsPitches :: [Pitch ]→ [AbsPitch ]
toAbsPitches [ ] = [ ]
toAbsPitches (p : ps) = absPitch p : toAbsPitches ps

We might also want to convert a list of absolute pitches to a list of
pitches:
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toPitches :: [AbsPitch ]→ [Pitch ]
toPitches [ ] = [ ]
toPitches (a : as) = pitch a : toPitches as

These two functions are different, but share something in common: there
is a repeating pattern of operations. But the pattern is not quite like any
of the examples studied earlier, and therefore it is unclear how to apply the
abstraction principle. What distinguishes this situation is that there is a
repeating pattern of recursion.

In discerning the nature of a repeating pattern, recall that it is sometimes
helpful to first identify those things that are not repeating—i.e. those things
that are changing—since these will be the sources of parameterization: those
values that must be passed as arguments to the abstracted function. In
the case above, these changing values are the functions absPitch and pitch;
consider them instances of a new name, f . Rewriting either of the above
functions as a new function—call it map—that takes an extra argument f ,
yields:

map f [ ] = [ ]
map f (x : xs) = f x :map f xs

This recursive pattern of operations is so common that map is predefined in
Haskell (and is why the name map was chosen in the first place).

With map, we can now redefine toAbsPitches and toPitches as:

toAbsPitches :: [Pitch ]→ [AbsPitch ]
toAbsPitches ps = map absPitch ps

toPitches :: [AbsPitch ]→ [Pitch ]
toPitches as = map pitch as

Note that these definitions are non-recursive; the common pattern of recur-
sion has been abstracted away and isolated in the definition of map. They
are also very succinct; so much so, that it seems unnecessary to create new
names for these functions at all! One of the powers of higher-order functions
is that they permit concise yet easy-to-understand definitions such as this,
and you will see many similar examples throughout the remainder of the
text.

A proof that the new versions of these two functions are equivalent to
the old ones can be done via calculation, but requires a proof technique
called induction, because of the recursive nature of the original function
definitions. Inductive proofs are discussed in detail, including for these two
examples, in Chapter 10.
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3.2.1 Map is Polymorphic

What should the type of map be? Looking first at its use in toAbsPitches ,
note that it takes the function absPitch :: Pitch → AbsPitch as its first
argument and a list of Pitchs as its second argument, returning a list of
AbsPitchs as its result. So its type must be:

map :: (Pitch → AbsPitch)→ [Pitch ]→ [AbsPitch ]

Yet a similar analysis of its use in toPitches reveals that map’s type should
be:

map :: (AbsPitch → Pitch)→ [AbsPitch ]→ [Pitch ]

This apparent anomaly can be resolved by noting thatmap, like length, head ,
and tail , does not really care what its list element types are, as long as its
functional argument can be applied to them. Indeed, map is polymorphic,
and its most general type is:

map :: (a → b)→ [a ]→ [b ]

This can be read: “map is a function that takes a function from any type a
to any type b, and a list of a’s, and returns a list of b’s.” The correspon-
dence between the two a’s and between the two b’s is important: a function
that converts Int ’s to Char ’s, for example, cannot be mapped over a list of
Char ’s. It is easy to see that in the case of toAbsPitches, a is instantiated
as Pitch and b as AbsPitch, whereas in toPitches , a and b are instantiated
as AbsPitch and Pitch, respectively.

Note, as we did in Section 2.2, that the above reasoning can be viewed
as the abstraction principle at work at the type level.
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Details: In Chapter 1 it was mentioned that every expression in Haskell has an
associated type. But with polymorphism, we might wonder if there is just one type
for every expression. For example, map could have any of these types:

(a → b)→ [a ]→ [b ]
(Integer → b)→ [Integer ]→ [b ]
(a → Float)→ [a ]→ [Float ]
(Char → Char )→ [Char ]→ [Char ]

and so on, depending on how it will be used. However, notice that the first of

these types is in some fundamental sense more general than the other three. In

fact, every expression in Haskell has a unique type known as its principal type:

the least general type that captures all valid uses of the expression. The first type

above is the principal type of map, since it captures all valid uses of map, yet is

less general than, for example, the type a → b → c. As another example, the

principal type of head is [a ] → a; the types [b ] → a, b → a, or even a are

too general, whereas something like [Integer ] → Integer is too specific. (The

existence of unique principal types is the hallmark feature of the Hindley-Milner

type system [Hin69, Mil78] that forms the basis of the type systems of Haskell,

ML [MTH90] and several other functional languages [Hud89].)

3.2.2 Using map

For a musical example involving map, consider the task of generating a
six-note whole-tone scale starting at a given pitch:1

wts :: Pitch → [Music Pitch ]
wts p = let f ap = note qn (pitch (absPitch p + ap))

in map f [0, 2, 4, 6, 8]

For example:

wts a440
=⇒ [note qn (A, 4), note qn (B , 4), note qn (C#, 4),

note qn (D#, 4), note qn (F , 4), note qn (G , 4)]

Exercise 3.1 Using map, define:

1. A function f1 :: Int → [Pitch ]→ [Pitch ] that transposes each pitch in
its second argument by the amount specified in its first argument.

1A whole-tone scale is a sequence of six ascending notes, with each adjacent pair of
notes separated by two semitones, i.e. a whole note.
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2. A function f2 :: [Dur ] → [Music a ] that turns a list of durations into
a list of rests, each having the corresponding duration.

3. A function f3 :: [Music Pitch ] → [Music Pitch ] that takes a list of
music values (that are assumed to be single notes), and for each such
note, halves its duration and places a rest of that same duration after
it. For example:

f3 [c 4 qn, d 4 en, e 4 hn ]
=⇒ [c 4 en :+: rest en, d 4 sn :+: rest sn , e 4 qn :+: rest qn ]

You can think of this as giving a staccato interpretation of the notes.

3.3 Append

Consider now the problem of concatenating or appending two lists together;
that is, creating a third list that consists of all of the elements from the first
list followed by all of the elements of the second. Once again the type of
list elements does not matter, so we can define this as a polymorphic infix
operator (++):

(++) :: [a ]→ [a ]→ [a ]

For example, here are two uses of (++) on different types:

[1, 2, 3] ++ [4, 5, 6] =⇒ [1, 2, 3, 4, 5, 6]
[C ,E ,G ] ++ [D ,F ,A ] =⇒ [C ,E ,G ,D ,F ,A ]

As usual, we can approach this problem by considering the various pos-
sibilities that could arise as input. But in the case of (++) there are two
inputs—so which should be considered first? In general this is not an easy
question to answer, so we could just try the first list first: it could be empty,
or non-empty. If it is empty the answer is easy:

[ ] ++ ys = ys

and if it is not empty the answer is also straightforward:

(x : xs) ++ ys = x : (xs ++ ys)

Note the recursive use of (++). The full definition is thus:

(++) :: [a ]→ [a ]→ [a ]
[ ] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)
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Details: Note that an infix operator can be defined just as any other function,
including pattern-matching, except that on the left-hand-side it is written using
its infix syntax.

Also be aware that this textbook takes liberty in typesetting by displaying the

append operator as ++. When you type your code, however, you will need to write

++. Recall that infix operators in Haskell must not contain any numbers or letters

of the alphabet, and also must not begin with a colon (because those are reserved

to be infix constructors).

If we were to consider instead the second list first, then the first equation
would still be easy:

xs ++ [ ] = xs

but the second is not so obvious:

xs ++ (y : ys) = ??

So it seems that the right choice was made to begin with.

Like map, the concatenation operator (++) is used so often that it is
predefined in Haskell.

3.3.1 [Advanced] The Efficiency and Fixity of Append

In Chapter 10 the following simple property about (++) will be proved:

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

That is, (++) is associative.

But what about the efficiency of the left-hand and right-hand sides of
this equation? It is easy to see via calculation that appending two lists
together takes a number of steps proportional to the length of the first list
(indeed the second list is not evaluated at all). For example:

[1, 2, 3] ++ xs
⇒ 1 : ([2, 3] ++ xs)
⇒ 1 : 2 : ([3] ++ xs)
⇒ 1 : 2 : 3 : ([ ] ++ xs)
⇒ 1 : 2 : 3 : xs

Therefore the evaluation of xs ++ (ys ++ zs) takes a number of steps propor-
tional to the length of xs plus the length of ys. But what about (xs++ys)++
zs? The leftmost append will take a number of steps proportional to the
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length of xs , but then the rightmost append will require a number of steps
proportional to the length of xs plus the length of ys , for a total cost of:

2 ∗ length xs + length ys

Thus xs ++ (ys ++ zs) is more efficient than (xs ++ ys) ++ zs. This is why the
Standard Prelude defines the fixity of (++) as:

infixr 5 ++

In other words, if you just write xs++ys++ zs , you will get the most efficient
association, namely the right association xs++(ys++ zs). In the next section
a more dramatic example of this property will be introduced.

3.4 Fold

Suppose we wish to take a list of notes (each of type Music a) and convert
them into a line, or melody. We can define a recursive function to do this
as follows:

line :: [Music a ]→ Music a
line [ ] = rest 0
line (m :ms) = m :+: line ms

Note that this function is polymorphic—the first example so far, in fact, of
a polymorphic function involving the Music data type.

We might also wish to have a function chord that operates in an analo-
gous way, but using (:=:) instead of (:+:):

chord :: [Music a ]→ Music a
chord [ ] = rest 0
chord (m :ms) = m :=: chord ms

This function is also polymorphic.

In a completely different context we might wish to compute the highest
pitch in a list of pitches, which we might capture in the following way:

maxPitch :: [Pitch ]→ Pitch
maxPitch [ ] = pitch 0
maxPitch (p : ps) = p !!!maxPitch ps

where (!!!) is defined as:

p1 !!! p2 = if absPitch p1 > absPitch p2 then p1 else p2
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Details: An expression if pred then cons else alt is called a conditional expres-

sion. If pred (called the predicate) is true, then cons (called the consequence) is

the result; if pred is false, then alt (called the alternative) is the result.

Once again we have a situation where several definitions share something
in common: a repeating recursive pattern. Using the process used earlier to
discover map, we first identify those things that are changing. There are two
situations: the rest 0 and pitch 0 values (for which the generic name init ,
for “initial value,” will be used), and the (:+:), (:=:), and (!!!) operators (for
which the generic name op, for “operator,” will be used). Now rewriting
any of the above three functions as a new function—call it fold—that takes
extra arguments op and init , we arrive at:2

fold op init [ ] = init
fold op init (x : xs) = x ‘op‘ fold op init xs

Details: Any normal binary function name can be used as an infix operator by

enclosing it in backquotes; x ‘f ‘ y is equivalent to f x y. Using infix application

here for op better reflects the structure of the repeating pattern that is being

abstracted, but could also have been written op x (fold op init xs).

With this definition of fold we can now rewrite the definitions of line,
chord, and maxPitch as:

line, chord :: [Music a ]→ Music a
line ms = fold (:+:) (rest 0) ms
chord ms = fold (:=:) (rest 0) ms

maxPitch :: [Pitch ]→ Pitch
maxPitch ps = fold (!!!) (pitch 0) ps

2The use of the name “fold” for this function is historical (within the functional pro-
gramming community), and has nothing to do with the use of “fold” and “unfold” in
Chapter 1 to describe steps in a calculation.
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Details: Just as we can turn a function into an operator by enclosing it in

backquotes, we can turn an operator into a function by enclosing it in parentheses.

This is required in order to pass an operator as a value to another function, as in

the examples above. (If we wrote fold !!! 0 ps instead of fold (!!!) 0 ps it would

look like we were trying to apply (!!!) to fold and 0 ps , which is nonsensical and

ill-typed.)

In Chapter 10 we will use induction to prove that these new definitions
are equivalent to the old.

fold , like map, is a highly useful—reusable—function, as will be seen
through several other examples later in the text. Indeed, it too is polymor-
phic, for note that it does not depend on the type of the list elements. Its
most general type—somewhat trickier than that for map—is:

fold :: (a → b → b)→ b → [a ]→ b

This allows us to use fold whenever we need to “collapse” a list of elements
using a binary (i.e. two-argument) operator.

As a final example, recall the definition of hList from Chapter 1:

hList :: Dur → [Pitch ]→ Music Pitch
hList d [ ] = rest 0
hList d (p : ps) = hNote d p :+: hList d ps

A little thought should convince the reader that this can be rewritten as:

hList d ps = let f p = hNote d p
in line (map f ps)

This version is more modular, in that it avoids explicit recursion, and is
instead built up from smaller building blocks, namely line (which uses fold)
and map.

3.4.1 Haskell’s Folds

Haskell actually defines two versions of fold in the Standard Prelude. The
first is called foldr (“fold-from-the-right”) whose definition is the same as
that of fold given earlier:

foldr :: (a → b → b)→ b → [a ]→ b
foldr op init [ ] = init
foldr op init (x : xs) = x ‘op‘ foldr op init xs
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A good way to think about foldr is that it replaces all occurrences of the
list operator (:) with its first argument (a function), and replaces [ ] with its
second argument. In other words:

foldr op init (x1 : x2 : ... : xn : [ ])
=⇒ x1 ‘op‘ (x2 ‘op‘ (...(xn ‘op‘ init)...))

This might help in better understanding the type of foldr , and also explains
its name: the list is “folded from the right.” Stated another way, for any
list xs , the following always holds:3

foldr (:) [ ] xs =⇒ xs

Haskell’s second version of fold is called foldl:

foldl :: (b → a → b)→ b → [a ]→ b
foldl op init [ ] = init
foldl op init (x : xs) = foldl op (init ‘op‘ x ) xs

A good way to think about foldl is to imagine “folding the list from the
left:”

foldl op init (x1 : x2 : ... : xn : [ ])
=⇒ (...((init ‘op‘ x1) ‘op‘ x2)...) ‘op‘ xn

3.4.2 [Advanced] Why Two Folds?

Note that if we had used foldl instead of foldr in the definitions given earlier
then not much would change; foldr and foldl would give the same result.
Indeed, judging from their types, it looks like the only difference between
foldr and foldl is that the operator takes its arguments in a different order.

So why does Haskell have two versions of fold? It turns out that there
are situations where using one is more efficient, and possibly “more defined”
(that is, the function terminates on more values of its input domain) than
the other.

Probably the simplest example of this is a generalization of the asso-
ciativity of (++) discussed in the last section. Suppose we wish to collapse
a list of lists into one list. The Standard Prelude defines the polymorphic
function concat for this purpose:

concat :: [ [a ] ]→ [a ]
concat xss = foldr (++) [ ] xss

For example:

3This will be formally proved in Chapter 10.
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concat [ [1], [3, 4], [ ], [5, 6]]
=⇒ [1] ++ ([3, 4] ++ ([ ] ++ ([5, 6] ++ [ ])))
=⇒ [1, 3, 4, 5, 6]

More generally, we have that:

concat [xs1, xs2, ..., xsn ]
⇒ foldr (++) [ ] [xs1, xs2, ..., xsn ]
=⇒ xs1 ++ (xs2 ++ (...(xn ++ [ ]))...)

The total cost of this computation is proportional to the sum of the lengths
of all of the lists. If each list has the same length len, and there are n lists,
then this cost is (n − 1) ∗ len.

On the other hand, if we had defined concat this way:

slowConcat xss = foldl (++) [ ] xss

then:

slowConcat [xs1, xs2, ..., xsn ]
⇒ foldl (++) [ ] [xs1, xs2, ..., xsn ]
=⇒ (...(([ ] ++ x1) ++ x2)...) ++ xn

If each list has the same length len, then the cost of this computation will
be:

len + (len + len) + (len + len + len) + ...+ (n − 1) ∗ len
= n ∗ (n − 1) ∗ len/2

which is considerably worse than (n − 1) ∗ len. Thus the choice of foldr in
the definition of concat is quite important.

Similar examples can be given to demonstrate that foldl is sometimes
more efficient than foldr . On the other hand, in many cases the choice does
not matter at all (consider, for example, (+)). The moral of all this is that
care must be taken in the choice between foldr and foldl if efficiency is a
concern.

3.4.3 Fold for Non-empty Lists

In certain contexts it may be understood that the functions line and chord
should not be applied to an empty list. For such situations the Standard
Prelude provides functions foldr1 and foldl1 , which return an error if applied
to an empty list. And thus we may also desire to define versions of line and
chord that adopt this behavior:
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line1, chord1 :: [Music a ]→ Music a
line1 ms = foldr1 (:+:) ms
chord1 ms = foldr1 (:=:) ms

Note that foldr1 and foldl1 do not take an init argument.

In the case of maxPitch we could go a step further and say that the
previous definition is in fact flawed, for who is to say what the maximum
pitch of an empty list is? The choice of 0 was indeed arbitrary, and in a
way it is nonsensical—how can 0 be the maximum if it is not even in the
list? In such situations we might wish to define only one function, and to
have that function return an error when presented with an empty list. For
consistency with line and chord , however, that function is defined here with
a new name:

maxPitch1 :: [Pitch ]→ Pitch
maxPitch1 ps = foldr1 (!!!) ps

3.5 [Advanced] A Final Example: Reverse

As a final example of a useful list function, consider the problem of reversing
a list, which will be captured in a function called reverse. This could be
useful, for example, when constructing the retrograde of a musical passage,
i.e. the music as if it were played backwards. For example, reverse [C ,D ,Ef ]
is [Ef ,D ,C ].

Thus reverse takes a single list argument, whose possibilities are the
normal ones for a list: it is either empty, or it is not. And thus:

reverse :: [a ]→ [a ]
reverse [ ] = [ ]
reverse (x : xs) = reverse xs ++ [x ]

This, in fact, is a perfectly good definition for reverse—it is certainly clear—
except for one small problem: it is terribly inefficient! To see why, first recall
that the number of steps needed to compute xs ++ ys is proportional to the
length of xs . Now suppose that the list argument to reverse has length n.
The recursive call to reverse will return a list of length n − 1, which is the
first argument to (++). Thus the cost to reverse a list of length of n will be
proportional to n − 1 plus the cost to reverse a list of length n − 1. So the
total cost is proportional to (n− 1) + (n− 2) + · · ·+ 1 = n(n− 1)/2, which
in turn is proportional to the square of n.

Can we do better than this? In fact, yes.
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There is another algorithm for reversing a list, which can be described
intuitively as follows: take the first element, and put it at the front of an
empty auxiliary list; then take the next element and add it to the front of the
auxiliary list (thus the auxiliary list now consists of the first two elements
in the original list, but in reverse order); then do this again and again until
the end of the original list is reached. At that point the auxiliary list will
be the reverse of the original one.

This algorithm can be expressed recursively, but the auxiliary list implies
the need for a function that takes two arguments—the original list and the
auxiliary one—yet reverse only takes one. This can be solved by creating
an auxiliary function rev :

reverse xs = let rev acc [ ] = acc
rev acc (x : xs) = rev (x : acc) xs

in rev [ ] xs

The auxiliary list is the first argument to rev , and is called acc since it
behaves as an “accumulator” of the intermediate results. Note how it is
returned as the final result once the end of the original list is reached.

A little thought should convince the reader that this function does not
have the quadratic (n2) behavior of the first algorithm, and indeed can be
shown to execute a number of steps that is directly proportional to the
length of the list, which we can hardly expect to improve upon.

But now, compare the definition of rev with the definition of foldl :

foldl op init [ ] = init
foldl op init (x : xs) = foldl op (init ‘op‘ x ) xs

They are somewhat similar. In fact, suppose we were to slightly revise the
definition of rev as follows:

rev op acc [ ] = acc
rev op acc (x : xs) = rev op (acc ‘op‘ x ) xs

Now rev looks strongly like foldl , and the question becomes whether or not
there is a function that can be substituted for op that would make the latter
definition of rev equivalent to the former one. Indeed there is:

revOp a b = b : a

For note that:

acc ‘revOp‘ x
⇒ revOp acc x
⇒ x : acc
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So reverse can be rewritten as:

reverse xs = let rev op acc [ ] = acc
rev op acc (x : xs) = rev op (acc ‘op‘ x ) xs

in rev revOp [ ] xs

which is the same as:

reverse xs = foldl revOp [ ] xs

If all of this seems like magic, well, you are starting to see the beauty of
functional programming!

3.6 Currying

We can improve further upon some of the definitions given in this chapter
using a technique called currying simplification. To understand this idea,
first look closer at the notation used to write function applications, such as
simple x y z . Although, as noted earlier, this is similar to the mathematical
notation simple(x, y, z), in fact there is an important difference, namely that
simple x y z is actually shorthand for (((simple x ) y) z ). In other words,
function application is left associative, taking one argument at a time.

Now look at the expression (((simple x ) y) z ) a bit closer: there is an
application of simple to x , the result of which is applied to y ; so (simple x )
must be a function! The result of this application, ((simple x ) y), is then
applied to z , so ((simple x ) y) must also be a function!

Since each of these intermediate applications yields a function, it seems
perfectly reasonable to define a function such as:

multSumByFive = simple 5

What is simple 5? From the above argument it is clear that it must be a
function. And from the definition of simple in Section 1 we might guess that
this function takes two arguments, and returns 5 times their sum. Indeed,
we can calculate this result as follows:

multSumByFive a b
⇒ (simple 5) a b
⇒ simple 5 a b
⇒ 5 ∗ (a + b)

The intermediate step with parentheses is included just for clarity. This
method of applying functions to one argument at a time, yielding interme-
diate functions along the way, is called currying, after the logician Haskell
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B. Curry who popularized the idea.4 It is helpful to look at the types of the
intermediate functions as arguments are applied:

simple :: Float → Float → Float → Float
simple 5 :: Float → Float → Float
simple 5 a :: Float → Float
simple 5 a b :: Float

For a musical example of this idea, recall the function note :: Dur →
Pitch → Music Pitch. So note qn is a function that, given a pitch, yields a
quarter note rendition of that pitch. A common use of this idea is simplifying
something like:

note qn p1 :+: note qn p2 :+: ... :+: note qn pn

to:

line (map (note qn) [p1, p2, ..., pn ])

Indeed, this idea is used extentively in the larger example in the next chapter.

3.6.1 Currying Simplification

We can also use currying to improve some of the previous function definitions
as follows. Suppose that the values of f x and g x are the same, for all values
of x . Then it seems clear that the functions f and g are equivalent.5 So, if
we wish to define f in terms of g , instead of writing:

f x = g x

We could instead simply write:

f = g

We can apply this reasoning to the definitions of line and chord from
Section 3.4:

line ms = fold (:+:) (rest 0) ms
chord ms = fold (:=:) (rest 0) ms

Since function application is left associative, we can rewrite these as:

line ms = (fold (:+:) (rest 0)) ms
chord ms = (fold (:=:) (rest 0)) ms

But now applying the same reasoning here as was used for f and g above

4It was actually Schönfinkel who first called attention to this idea [Sch24], but the word
“schönfinkelling” is rather a mouthful!

5In mathematics, we would say that the two functions are extensionally equivalent.
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means that we can write these simply as:

line = fold (:+:) (rest 0)
chord = fold (:=:) (rest 0)

Similarly, the definitions of toAbsPitches and toPitches from Section 3.2:

toAbsPitches ps = map absPitch ps
toPitches as = map pitch as

can be rewritten as:

toAbsPitches = map absPitch
toPitches = map pitch

Furthermore, the definition hList , most recently defined as:

hList d ps = let f p = hNote d p
in line (map f ps)

can be rewritten as:

hList d ps = let f = hNote d
in line (map f ps)

and since the definition of f is now so simple, we might as well “in-line” it:

hList d ps = line (map (hNote d) ps)

This kind of simplification will be referred to as “currying simplification”
or just “currying.”6

Details: Some care should be taken when using this simplification idea. In

particular, note that an equation such as f x = g x y x cannot be simplified

to f = g x y, since then the remaining x on the right-hand side would become

undefined!

3.6.2 [Advanced] Simplification of reverse

Here is a more interesting example, in which currying simplification is used
three times. Recall from Section 3.5 the definition of reverse using foldl :

reverse xs = let revOp acc x = x : acc
in foldl revOp [ ] xs

6In the Lambda Calculus this is called “eta contraction.”
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Using the polymorphic function flip which is defined in the Standard Prelude
as:

flip :: (a → b → c)→ (b → a → c)
flip f x y = f y x

it should be clear that revOp can be rewritten as:

revOp acc x = flip (:) acc x

But now currying simplification can be used twice to reveal that:

revOp = flip (:)

This, along with a third use of currying, allows us to rewrite the definition
of reverse simply as:

reverse = foldl (flip (:)) [ ]

This is in fact the way reverse is defined in the Standard Prelude.

Exercise 3.2 Show that flip (flip f ) is the same as f .

Exercise 3.3 What is the type of ys in:

xs = [1, 2, 3] :: [Integer ]
ys = map (+) xs

Exercise 3.4 Define a function applyEach that, given a list of functions,
applies each to some given value. For example:

applyEach [simple 2 2, (+3)] 5 =⇒ [14, 8]

where simple is as defined in Chapter 1.

Exercise 3.5 Define a function applyAll that, given a list of functions
[f1, f2, ..., fn ] and a value v , returns the result f1 (f2 (...(fn v)...)). For exam-
ple:

applyAll [simple 2 2, (+3)] 5 =⇒ 20

Exercise 3.6 Recall the discussion about the efficiency of (++) and concat
in Chapter 3. Which of the following functions is more efficient, and why?

appendr , appendl :: [ [a ] ]→ [a ]
appendr = foldr (flip (++)) [ ]
appendl = foldl (flip (++)) [ ]
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3.7 Errors

The last section suggested the idea of “returning an error” when the argu-
ment to foldr1 is the empty list. As you might imagine, there are other
situations where an error result is also warranted.

There are many ways to deal with such situations, depending on the
application, but sometimes all we want to do is stop the program, signalling
to the user that some kind of an error has occurred. In Haskell this is done
with the Standard Prelude function error :: String → a. Note that error is
polymorphic, meaning that it can be used with any data type. The value
of the expression error s is ⊥, the completely undefined, or “bottom” value
that was discussed in Section 1.4. As an example of its use, here is the
definition of foldr1 from the Standard Prelude:

foldr1 :: (a → a → a)→ [a ]→ a
foldr1 f [x ] = x
foldr1 f (x : xs) = f x (foldr1 f xs)
foldr1 f [ ] = error "Prelude.foldr1: empty list"

Thus if the anomalous situation arises, the program will terminate immedi-
ately, and the string "Prelude.foldr1: empty list" will be printed.

Exercise 3.7 Rewrite the definition of length non-recursively.

Exercise 3.8 Define a function that behaves as each of the following:

a) Doubles each number in a list. For example:

doubleEach [1, 2, 3] =⇒ [2, 4, 6]

b) Pairs each element in a list with that number and one plus that number.
For example:

pairAndOne [1, 2, 3] =⇒ [(1, 2), (2, 3), (3, 4)]

c) Adds together each pair of numbers in a list. For example:

addEachPair [(1, 2), (3, 4), (5, 6)] =⇒ [3, 7, 11]

d) Adds “pointwise” the elements of a list of pairs. For example:

addPairsPointwise [(1, 2), (3, 4), (5, 6)] =⇒ (9, 12)
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Exercise 3.9 Define a polymorphic function fuse::[Dur ]→ [Dur → Music a ]→
[Music a ] that combines a list of durations with a list of notes lacking a du-
ration, to create a list of complete notes. For example:

fuse [qn, hn , sn ] [c 4, d 4, e 4]
=⇒ [c 4 qn, d 4 hn , e 4 sn ]

You may signal an error if the lists have unequal lengths.

In the next two exercises, give both recursive and (if possible) non-
recursive definitions, and be sure to include type signatures.

Exercise 3.10 Define a function maxAbsPitch that determines the maxi-
mum absolute pitch of a list of absolute pitches. Define minAbsPitch anal-
ogously. Both functions should return an error if applied to the empty list.

Exercise 3.11 Define a function chrom :: Pitch → Pitch → Music Pitch
such that chrom p1 p2 is a chromatic scale of quarter-notes whose first pitch
is p1 and last pitch is p2. If p1>p2, the scale should be descending, otherwise
it should be ascending. If p1 == p2, then the scale should contain just one
note. (A chromatic scale is one whose successive pitches are separated by
one absolute pitch (i.e. one semitone)).

Exercise 3.12 Abstractly, a scale can be described by the intervals between
successive notes. For example, the 7-note major scale can be defined as the
sequence of 6 intervals [2, 2, 1, 2, 2, 2], and the 12-note chromatic scale by the
11 intervals [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. Define a function mkScale :: Pitch →
[Int ]→ Music Pitch such that mkScale p ints is the scale beginning at pitch
p and having the intervallic structure ints .

Exercise 3.13 Define an enumerated data type that captures each of the
standard major scale modes: Ionian, Dorian, Phrygian, Lydian, Mixolydian,
Aeolian, and Locrian. Then define a function genScale that, given one
of these contructors, generates a scale in the intervalic form described in
Exercise 3.12.

Exercise 3.14 Write the melody of “Frère Jacques” (or, “Are You Sleep-
ing”) in Euterpea. Try to make it as succinct as possible. Then, using
functions already defined, generate a traditional four-part round, i.e. four
identical voices, each delayed successively by two measures. Use a different
instrument to realize each voice.
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Exercise 3.15 Freddie the Frog wants to communicate privately with his
girlfriend Francine by encrypting messages sent to her. Frog brains are
not that large, so they agree on this simple strategy: each character in
the text shall be converted to the character “one greater” than it, based
on the representation described below (with wrap-around from 255 to 0).
Define functions encrypt and decrypt that will allow Freddie and Francine
to communicate using this strategy.

Details: Characters are often represented inside a computer as some kind of an

integer; in the case of Haskell, a 16-bit unicode representation is used. However,

the standard keyboard is adequately represented by a standard byte (eight bits),

and thus we only need to consider the first 256 codes in the unicode representation.

For the above exercise, you will want to use two Haskell functions, toEnum and

fromEnum . The first will convert an integer into a character, the second will

convert a character into an integer.



Chapter 4

A Musical Interlude

At this point enough detail about Haskell and Euterpea has been covered
that it is worth developing a small but full application or two. In this chapter
an existing composition will be transcribed into Euterpea, thus exemplifying
how to express conventional musical ideas in Euterpea. Then a simple form
of algorithmic composition will be presented, where it will become apparent
that more exotic things can be easily expressed as well.

But before tackling either of these, Haskell’s modules will be described
in more detail.

4.1 Modules

Haskell programs are partitioned into modules that capture common types,
functions, etc. that naturally comprise an application. The first part of a
module is called the module header, which declares what the name of the
module is, and what other modules it might import. For this chapter the
module’s name is Interlude , into which the module Euterpea is imported:

module Interlude where
import Euterpea

Details: Module names must always be capitalized (just like type names).

67
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Maintaining the name space of modules in a large software system can
be a daunting task. So Haskell provides a way to structure module names
hierachically. Indeed, because the Interlude module is part of the overall
Euterpea library, the actual module declaration that is used is:

module Euterpea.Examples .Interlude where
import Euterpea

This says that the Interlude module is part of the Examples folder in the
overall Euterpea library. In general, these hierarchical names correspond to
the folder (directory) structure of a particular implementation. Similarly,
the name of the file containing the module is generally the same as the
module name, plus the file extension (in this case, the name of the file is
Interlude .lhs).

If we wish to use this module in another module M , say, it may be im-
ported into M , just as was done above in importing Euterpea into Interlude :

module M where
import Euterpea.Examples .Interlude

This will make available in M all of the names of functions, types, and so
on that are defined at the top-level of Interlude .

But this is not always what the programmer would like. Another purpose
of a module is to manage the overall name space of an application. Modules
allow us to structure an application in such a way that only the functionality
intended for the end user is visible—everything else needed to implement
the system is effectively hidden. In the case of Interlude, there are only two
names whose visibillity is desirable: childSong6 , and prefix . This can be
achieved by writing the module header as follows:

module Euterpea.Examples .Interlude (childSong6 , prefix ) where
import Euterpea

This set of visible names is sometimes called the export list of the module.
If the list is omitted, as was done initially, then all names defined at the top
level of the module are exported.

Although explicit type signatures in export lists are not allowed, it is
sometime useful to add them as comments, at least, as in:

module Euterpea.Examples .Interlude
( childSong6 , -- :: Music Pitch,
prefix -- :: [Music a] -¿ Music a)

) where
import Euterpea
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In this case the list of names is sometimes called the interface to the module.

There are several other rules concerning the import and export of names
to and from modules. Rather than introduce them all at once, they will be
introduced as needed in future chapters.

4.2 Transcribing an Existing Score

Figure 4.1 shows the first 28 bars of Chick Corea’s Children’s Songs No. 6,
written for electric piano [Cor94]. Analyzing the structure of this tune ex-
plores several basic issues that arise in the transcription of an existing score
into Euterpea, including repeating phrases, grace notes, triplets, tempo,
and specifying an instrument. To begin, however, we will define a couple of
auxiliary functions to make our job easier.

4.2.1 Auxiliary Functions

For starters, note that there are several repeating patterns of notes in this
composition, each enclosed in a rectangle in Figure 4.1. In fact, the bass
line consists entirely of three repeating phrases. In anticipation of this, a
function can be defined that repeats a phrase a particular number of times:

timesM :: Int → Music a → Music a
timesM 0 m = rest 0
timesM n m = m :+: timesM (n − 1) m

Details: Note that pattern-matching can be used on numbers. As mentioned

earlier, when there is more than one equation that defines a function, the first

equation is tried first. If it fails, the second equation is tried, and so on. In the

case above, if the first argument to timesM is not 0, the first equation will fail.

The second equation is then tried, which always succeeds.

So, for example, timesM 3 b1 will repeat the baseline b1 (to be defined
shortly) three times.

To motivate the second auxiliary function, note in Figure 4.1 that there
are many melodic lines that consist of a sequence of consecutive notes having
the same duration (for example eighth notes in the melody, and dotted
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Figure 4.1: Excerpt from Chick Corea’s Children’s Songs No. 6
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quarter notes in the bass). To avoid having to write each of these durations
explicitly, we will define a function that specifies them just once. To do this,
recall that a 4 qn is a concert A quarter note. Then note that, because of
currying, a 4 is a function that can be applied to any duration—i.e. its type
is Dur → Music a. In other words, it is a note whose duration has not been
specified yet.

With this thought in mind, we can return to the original problem and
define a function that takes a duration and a list of notes with the afore-
mentioned type, returning a Music value with the duration attached to each
note appropriately. In Haskell:

addDur :: Dur → [Dur → Music a ]→ Music a
addDur d ns = let f n = n d

in line (map f ns)

(Compare this idea with Exercise 3.9 in Chapter 3.)

Finally, a function to add a grace note to a note is defined. Grace notes
can approach the principal note from above or below; sometimes starting a
half-step away, and sometimes a whole step; and having a rhythmic inter-
pretation that is to a large extent up to the performer. In the case of the six
uses of grace notes in Children’s Songs No. 6, we will assume that the grace
note begins on the downbeat of the principal note, and thus its duration
will subtract from that of the principal note. We will also assume that the
grace note duration is 1/8 of that of the principal note. Thus the goal is to
define a function:

graceNote :: Int → Music Pitch → Music Pitch

such that graceNote n (note d p) is a Music value consisting of two notes,
the first being the grace note whose duration is d/8 and whose pitch is n
semitones higher (or lower if n is negative) than p, and the second being the
principal note at pitch p but now with duration 7d/8. In Haskell:

graceNote n (Prim (Note d p)) =
note (d/8) (trans n p) :+: note (7 ∗ d/8) p

graceNote n =
error "Can only add a grace note to a note."

Note that pattern-matching is performed against the nested constructors of
Prim and Note—we cannot match against the application of a function such
as note. Also note the error message—programs are not expected to ever
apply graceNote to something other than a single note.

(In Chapter 6 a slightly more general form of graceNote will be defined.)
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The only special cases that will not be handled using auxiliary functions
are the single staccato on note four of bar fifteen, and the single portamento
on note three of bar sixteen. These situations will be addressed differently
in a later chapter.

4.2.2 Bass Line

With these auxilary functions now defined, the base line in Figure 4.1 can be
defined by first noting the three repeating phrases (enclosed in rectangular
boxes), which can be captured as follows:

b1 = addDur dqn [b 3, fs 4, g 4, fs 4]
b2 = addDur dqn [b 3, es 4, fs 4, es 4]
b3 = addDur dqn [as 3, fs 4, g 4, fs 4]

Using timesM it is then easy to define the entire 28 bars of the base line:

bassLine = timesM 3 b1 :+: timesM 2 b2 :+:
timesM 4 b3 :+: timesM 5 b1

4.2.3 Main Voice

The upper voice of this composition is a bit more tedious to define, but is
still straightforward. At the highest level, it consists of the phrase v1 in the
first two bars (in the rectangular box) repeated three times, followed by the
remaining melody, which will be named v2:

mainVoice = timesM 3 v1 :+: v2

The repeating phrase v1 is defined by:

v1 = v1a :+: graceNote (−1) (d 5 qn) :+: v1b -- bars 1-2
v1a = addDur en [a 5, e 5, d 5, fs 5, cs 5, b 4, e 5, b 4]
v1b = addDur en [cs 5, b 4]

Note the treatment of the grace note.

The remainder of the main voice, v2, is defined in seven pieces:

v2 = v2a :+: v2b :+: v2c :+: v2d :+: v2e :+: v2f :+: v2g

with each of the pieces defined in Figure 4.2. Note that:

• The phrases are divided so as to (for the most part) line up with bar
lines, for convenience. But it may be that this is not the best way
to organize the music—for example, we could argue that the last two
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v2a = line [cs 5 (dhn + dhn), d 5 dhn ,
f 5 hn , gs 5 qn, fs 5 (hn + en), g 5 en ] -- bars 7-11

v2b = addDur en [fs 5, e 5, cs 5, as 4] :+: a 4 dqn :+:
addDur en [as 4, cs 5, fs 5, e 5, fs 5] -- bars 12-13

v2c = line [g 5 en, as 5 en, cs 6 (hn + en), d 6 en, cs 6 en ] :+:
e 5 en :+: enr :+:
line [as 5 en , a 5 en, g 5 en, d 5 qn, c 5 en, cs 5 en ]

-- bars 14-16
v2d = addDur en [fs 5, cs 5, e 5, cs 5,

a 4, as 4, d 5, e 5, fs 5] -- bars 17-18.5
v2e = line [graceNote 2 (e 5 qn), d 5 en, graceNote 2 (d 5 qn), cs 5 en,

graceNote 1 (cs 5 qn), b 4 (en + hn), cs 5 en , b 4 en ]
-- bars 18.5-20

v2f = line [fs 5 en , a 5 en, b 5 (hn + qn), a 5 en, fs 5 en, e 5 qn ,
d 5 en, fs 5 en, e 5 hn , d 5 hn , fs 5 qn ] -- bars 21-23

v2g = tempo (3/2) (line [cs 5 en , d 5 en, cs 5 en ]) :+:
b 4 (3 ∗ dhn + hn) -- bars 24-28

Figure 4.2: Bars 7-28

notes in bar 20 form a “pick-up” to the phrase that follows, and thus
more logically fall with that following phrase. The organization of the
Euterpea code in this way is at the discretion of the composer.

• The stacatto is treated by playing the qurater note as an eighth note;
the portamento is ignored. As mentioned earlier, these ornamentations
will be addressed differently in a later chapter.

• The triplet of eighth notes in bar 25 is addressed by scaling the tempo
by a factor of 3/2.

4.2.4 Putting It All Together

In the Preface to Children’s Songs – 20 Pieces for Keyboard [Cor94], Chick
Corea notes that, “Songs 1 through 15 were composed for the Fender Rhodes.”
Therefore the MIDI instrument RhodesPiano is a logical choice for the tran-
scription of his composition. Furthermore, note in the score that a dotted
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half-note is specified to have a metronome value of 69. By default, the play
function in Euterpea uses a tempo equivalent to a quarter note having a
metronome value of 120. Therefore the tempo should be scaled by a factor
of (dhn/qn) ∗ (69/120).

These two observations lead to the final definition of the transcription
of Children’s Songs No. 6 into Euterpea:

childSong6 ::Music Pitch
childSong6 = let t = (dhn/qn) ∗ (69/120)

in instrument RhodesPiano
(tempo t (bassLine :=:mainVoice))

The intent is that this is the only value that will be of interest to users of this
module, and thus childSong6 is the only name exported from this section of
the module, as discussed in Section 4.1.

This example can be played through the command play childSong6 .

Exercise 4.1 Find a simple piece of music written by your favorite com-
poser, and transcribe it into Euterpea. In doing so, look for repeating pat-
terns, transposed phrases, etc. and reflect this in your code, thus revealing
deeper structural aspects of the music than that found in common practice
notation.

4.3 Simple Algorithmic Composition

Algorithmic composition is the process of designing an algorithm (or heuris-
tic) for generating music. There are unlimited possibilites, with some trying
to duplicate a particular style of music, others exploring more exotic styles;
some based on traditional notions of music theory, others not; some com-
pletely deterministic, others probabilistic; and some requiring user interac-
tion, others being completely automatic. Some even are based simply on
“interpreting” data—like New York Stock Exchange numbers—in interest-
ing ways! In this textbook a number of algorithmic composition techniques
are explored, but the possibilities are endless—hopefully what is presented
will motivate the reader to invent new, exciting algorithmic composition
techniques.

To give a very tiny glimpse into algorithmic composition, we end this
chapter with a very simple example. We will call this example “prefix,” for
reasons that will become clear shortly.
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The user of this algorithm provides an initial melody (or “motif”) rep-
resented as a list of notes. The main idea is to play every proper (meaning
non-empty) prefix of the given melody in succession. So the first thing we
do is define a polymorphic function prefixes :: [a ] → [ [a ] ] that returns all
proper prefixes of a list:

prefixes :: [a ]→ [ [a ] ]
prefixes [ ] = [ ]
prefixes (x : xs) = let f pf = x : pf

in [x ] :map f (prefixes xs)

We can use this to play all prefixes of a given melody mel in succession as
follows:

play (line (concat (prefixes mel)))

But let’s do a bit more. Let’s create two voices (each using a different
instrument), one voice being the reverse of the other, and play them in
parallel. And then let’s play the whole thing once, then transposed up a
perfect fourth (i.e. five semitones), then repeat the whole thing a final time.
And, let’s package it all into one function:

prefix :: [Music a ]→ Music a
prefix mel = let m1 = line (concat (prefixes mel))

m2 = transpose 12 (line (concat (prefixes (reverse mel))))
m = instrument Flute m1 :=: instrument VoiceOohs m2

in m :+: transpose 5 m :+:m

Here are two melodies (differing only in rhythm) that you can try with
this algorithm:

mel1 = [c 5 en, e 5 sn, g 5 en, b 5 sn, a 5 en, f 5 sn, d 5 en, b 4 sn, c 5 en ]
mel2 = [c 5 sn, e 5 sn, g 5 sn, b 5 sn, a 5 sn, f 5 sn, d 5 sn, b 4 sn, c 5 sn ]

Although not very sophisticated at all, prefix can generate some interesting
music from a very small seed.

Another typical approach to algorithmic composition is to specify some
constraints on the solution space, and then generate lots of solutions that
satisfy those constraints. The user can then choose one of the solutions
based on aesthetic preferences.

As a simple example of this, how do we choose the original melody in
the prefix program above? We could require that all solutions be a multiple
of some preferred meter. For example, in triple meter (say, 3/4 time) we
might wish for the solutions to be multiples of 3 quarter-note beats (i.e.
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one measure), or in 4/4 time, multiples of 4 beats. In this way the result
is always an integer number of measures. If the original melody consists of
notes all of the same duration, say one beat, then the prefixes, when played
sequentially, will have a total duration that is the sum of the numbers 1
through n, where n is the length of melody in beats. That sum is n∗(n+1)/2.
The first ten sums in this series are:

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...

The second, third, fifth, sixth, eighth, and ninth of these are divisible by 3,
and the seventh and eighth are divisible by 4. When rendering the result
we could then, for exaple, place an accent on the first note in each of these
implied measures, thus giving the result more of a musical feel. (Placing an
accent on a note will be explained in Chapters 6 and ??.)

Exercise 4.2 Try using prefix on your own melodies. Indeed, note that the
list of notes could in general be a list of any Music values.

Exercise 4.3 Try making the following changes to prefix :

1. Use different instruments.

2. Change the definition of m in some way.

3. Compose the result in a different way.



Chapter 5

Syntactic Magic

This chapter introduces several more of Haskell’s syntactic devices that fa-
ciliate writing concise and intuitive programs. These devices will be used
frequently in the remainder of the text.

5.1 Sections

The use of currying was introduced in Chapter 3 as a way to simplify pro-
grams. This is a syntactic device that relies on the way that normal functions
are applied, and how those applications are parsed.

With a bit more syntax, we can also curry applications of infix operators
such as (+). This syntax is called a section, and the idea is that, in an
expression such as (x + y), we can omit either the x or the y , and the result
(with the parentheses still intact) is a function of that missing argument.
If both variables are omitted, it is a function of two arguments. In other
words, the expressions (x+), (+y) and (+) are equivalent, respectively, to
the functions:

f1 y = x + y
f2 x = x + y
f3 x y = x + y

For example, suppose we wish to remove all absolute pitches greater than
99 from a list, perhaps because everything above that value is assumed to
be unplayable. There is a pre-defined function in Haskell that can help to
achieve this:

77
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filter :: (a → Bool )→ [a ]→ [a ]

filter p xs returns a list for which each element x satisfies the predicate p;
i.e. p x is True.

Using filter , we can then write:

playable :: [AbsPitch ]→ [AbsPitch ]
playable xs = let test ap = ap < 100

in filter test xs

But using a section, we can write this more succinctly as:

playable :: [AbsPitch ]→ [AbsPitch ]
playable xs = filter (<100) xs

which can be further simplified using currying:

playable :: [AbsPitch ]→ [AbsPitch ]
playable = filter (<100)

This is an extremely concise definition. As you gain experience with
higher-order functions you will not only be able to start writing definitions
such as this directly, but you will also start thinking in “higher-order” terms.
Many more examples of this kind of reasoning will appear throughout the
text.

Exercise 5.1 Define a function twice that, given a function f , returns a
function that applies f twice to its argument. For example:

(twice (+1)) 2⇒ 4

What is the principal type of twice? Describe what twice twice does, and
give an example of its use. Also consider the functions twice twice twice and
twice (twice twice)?

Exercise 5.2 Generalize twice defined in the previous exercise by defining
a function power that takes a function f and an integer n, and returns a
function that applies the function f to its argument n times. For example:

power (+2) 5 1 =⇒ 11

Use power in a musical context to define something useful.
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5.2 Anonymous Functions

Another way to define a function in Haskell is in some sense the most funda-
mental: it is called an anonymous function, or lambda expression (since the
concept is drawn directly from Church’s lambda calculus [Chu41]). The idea
is that functions are values, just like numbers and characters and strings,
and therefore there should be a way to create them without having to give
them a name. As a simple example, an anonymous function that increments
its numeric argument by one can be written λx → x + 1. Anonymous func-
tions are most useful in situations where you do not wish to name them,
which is why they are called “anonymous.” Anonymity is a property also
shared by sections, but sections can only be derived from an existing infix
operator.

Details: The typesetting used in this textbook prints an actual Greek lambda

character, but in writing λx → x + 1 in your programs you will have to type

“\x -> x+1” instead.

As another example, to raise the pitch of every element in a list of pitches
ps by an octave, we could write:

map (λp → pitch (absPitch p + 12)) ps

An even better example is an anonymous function that pattern-matches its
argument, as in the following, which doubles the duration of every note in
a list of notes ns:

map (λ(Note d p)→ Note (2 ∗ d) p) ns

Details: Anonymous functions can only perform one match against an argument.

That is, you cannot stack together several anonymous functions to define one

function, as you can with equations.

Anonymous functions are considered most fundamental because defini-
tions such as that for simple given in Chapter 1:

simple x y z = x ∗ (y + z )

can be written instead as:
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simple = λx y z → x ∗ (y + z )

Details: λx y z → exp is shorthand for λx → λy → λz → exp.

We can also use anonymous functions to explain precisely the behavior
of sections. In particular, note that:

(x+)⇒ λy → x + y
(+y)⇒ λx → x + y
(+) ⇒ λx y → x + y

Exercise 5.3 Suppose we define a function fix as:

fix f = f (fix f )

What is the principal type of fix? (This is tricky!) Suppose further that we
have a recursive function:

remainder :: Integer → Integer → Integer
remainder a b = if a < b then a

else remainder (a − b) b

Rewrite this function using fix so that it is not recursive. (Also tricky!) Do
you think that this process can be applied to any recursive function?

5.3 List Comprehensions

Haskell has a convenient and intuitive way to define a list in such a way that
it resembles the definition of a set in mathematics. For example, recall in
the last chapter the definition of the function addDur :

addDur :: Dur → [Dur → Music a ]→ Music a
addDur d ns = let f n = n d

in line (map f ns)

Here ns is a list of notes, each of which does not have a duration yet assigned
to it. If we think of this as a set, we might be led to write the following
solution in mathematical notation:

{n d | n ∈ ns}
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which can be read, “the set of all notes n d such that n is an element of ns.”
Indeed, using a Haskell list comprehension we can write almost exactly the
same thing:

[n d | n ← ns ]

The difference, of course, is that the above expression generates an (ordered)
list in Haskell, not an (unordered) set in mathematics.

List comprehensions allow us to rewrite the definition of addDur much
more succinctly and elegantly:

addDur :: Dur → [Dur → Music a ]→ Music a
addDur d ns = line [n d | n ← ns ]

Details: Liberty is again taken in type-setting by using the symbol← to mean “is
an element of.” When writing your programs, you will have to type “<-” instead.

The expression [exp | x ← xs ] is actually shorthand for the expression map (λx →
exp) xs. The form x ← xs is called a generator, and in general more than one is
allowed, as in:

[(x , y) | x ← [0, 1, 2], y ← [’a’, ’b’] ]

which evaluates to the list:

[(0, ’a’), (0, ’b’), (1, ’a’), (1, ’b’), (2, ’a’), (2, ’b’)]

The order here is important; that is, note that the left-most generator changes
least quickly.

It is also possible to filter values as they are generated; for example, we can modify
the above example to eliminate the odd integers in the first list:

[(x , y) | x ← [0, 1, 2], even x , y ← [’a’, ’b’] ]

where even n returns True if n is even. This example evaluates to:

[(0, ’a’), (0, ’b’), (2, ’a’), (2, ’b’)]
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Details: When reasoning about list comprehensions (e.g. when doing proof by
calculation), we can use the following syntactic translation into pure functions:

[e | True ] = [e ]
[e | q ] = [e | q,True ]
[e | b, qs ] = if b then [e | qs ] else [ ]
[e | p ← xs, qs ] = let ok p = [e | qs ]

ok = [ ]
in concatMap ok xs

[e | let decls , qs ] = let decls in [e | qs ]
where q is a single qualifier, qs is a sequence of qualifiers, b is a Boolean, p is a pat-

tern, and decls is a sequence of variable bindings (a feature of list comprehensions

not explained earlier).

5.3.1 Arithmetic Sequences

Another convenient syntax for lists whose elements can be enumerated is
called an arithmetic sequence. For example, the arithmetic sequence [1 . . 10]
is equivalent to the list:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]

There are actually four different versions of arithmetic sequences, some of
which generate infinite lists (whose use will be discussed in a later chapter).
In the following, let a = n ′ − n:

[n . . ] -- infinite list n, n + 1, n + 2, ...
[n,n ′ . . ] -- infinite list n, n + a, n + 2 ∗ a, ...
[n . .m ] -- finite list n, n + 1, n + 2, ..., m
[n,n ′ . .m ] -- finite list n, n + a, n + 2 ∗ a, ..., m

Arithmetic sequences are discussed in greater detail in Appendix B.

Exercise 5.4 Using list comprehensions, define a function:

apPairs :: [AbsPitch ]→ [AbsPitch ]→ [(AbsPitch,AbsPitch)]

such that apPairs aps1 aps2 is a list of all combinations of the absolute
pitches in aps1 and aps2. Furthermore, for each pair (ap1, ap2) in the result,
the absolute value of ap1−ap2 must be greater than two and less than eight.

Finally, write a function to turn the result of apPairs into a Music Pitch
value by playing each pair of pitches in parallel, and stringing them all
together sequentially. Try varying the rhythm by, for example, using an
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g f

y = f (g x) = (f  g) x

x y

Figure 5.1: Gluing Two Functions Together

eighth note when the first absolute pitch is odd, and a sixteenth note when
it is even, or some other criterion.

Test your functions by using arithemtic sequences to generate the two
lists of arguments given to apPairs .

5.4 Function Composition

An example of polymorphism that has nothing to do with data structures
arises from the desire to take two functions f and g and “glue them to-
gether,” yielding another function h that first applies g to its argument, and
then applies f to that result. This is called function composition (just as in
mathematics), and Haskell pre-defines a simple infix operator (◦) to achieve
it, as follows:

(◦) :: (b → c)→ (a → b)→ a → c
(f ◦ g) x = f (g x )

Details: The symbol for function composition is typeset in this textbook as ◦,
which is consistent with mathematical convention. When writing your programs,

however, you will have to use a period, as in “f . g”.

Note the type of the operator (◦); it is completely polymorphic. Note
also that the result of the first function to be applied—some type b—must be
the same as the type of the argument to the second function to be applied.
Pictorially, if we think of a function as a black box that takes input at
one end and returns some output at the other, function composition is like
connecting two boxes together, end to end, as shown in Figure 5.1.

The ability to compose functions using (◦) is quite handy. For example,
recall the last version of hList :
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hList d ps = line (map (hNote d) ps)

We can do two simplifications here. First, rewrite the right-hand side using
function composition:

hList d ps = (line ◦map (hNote d)) ps

Then, use currying simplification:

hList d = line ◦map (hNote d)

5.5 Higher-Order Thinking

It is worth taking a deep breath here and contemplating what has been done
with hList , which has gone through quite a few transformations. Here is the
original definition given in Chapter 1:

hList d [ ] = rest 0
hList d (p : ps) = hNote d p :+: hList d ps

Compare this to the definition above. You may be distressed to think that
you have to go through all of these transformations just to write a relatively
simple function! There are two points to make about this: First, you do
not have to make any of these transformations if you do not want to. All of
these versions of hList are correct, and they all run about equally fast. They
are explained here for pedagogical purposes, so that you understand the full
power of Haskell. Second, with practice, you will find that you can write
the concise higher-order versions of many functions straight away, without
going through all of the steps presented here.

As mentioned earlier, one thing that helps is to start thinking in “higher-
order” terms. To facilitate this way of thinking it is helpful to write type
signatures that reflect more closely their higher-order nature. For example,
recall these type signatures for map, filter , and (◦):

map :: (a → b)→ [a ]→ [b ]
filter :: (a → Bool )→ [a ]→ [a ]
(◦) :: (b → c)→ (a → b)→ a → c

Also recall that the arrow in function types is right associative. Therefore,
another completely equivalent way to write the above type signatures is:

map :: (a → b)→ ([a ]→ [b ])
filter :: (a → Bool )→ ([a ]→ [a ])
(◦) :: (b → c)→ (a → b)→ (a → c)

Although equivalent, the latter versions emphasize the fact that each of these
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functions returns a function as its result. map essentially “lifts” a function
on elements to a function on lists of elements. filter converts a predicate
into a function on lists. And (◦) returns a function that is the composition
of its two functional arguments.

So for example, using higher-order thinking, map (+12) is a function
that transposes a list of absolute pitches by one octave. filter (<100) is a
function that removes all absolute pitches greater than or equal to 100 (as
discussed earlier). And therefore map (+12) ◦ filter (<100) first does the
filtering, and then does the transposition. All very consise and very natural
using higher-order thinking.

In the remainder of this textbook definitions such as this will be written
directly, using a small set of rich polymorphic functions such as foldl , map,
filter , (◦), and a few other functions drawn from the Standard Prelude and
other standard libraries.

5.6 Infix Function Application

Haskell predefines an infix operator to apply a function to a value:

f $ x = f x

At first glance this does not seem very useful—after all, why not simply
write f x instead of f $ x?

But in fact this operator has a very useful purpose: eliminating paren-
theses! In the Standard Prelude, ($) is defined to be right associative, and
to have the lowest precedence level, via the fixity declaration:

infixr 0 $

Therefore, note that f (g x ) is the same as f $ g x (remember that normal
function application always has higher precedence than infix operator ap-
plication), and f (x + 1) is the same as f $ x + 1. This “trick” is especially
useful when there is a sequence of nested, parenthesized expresssions. For
example, recall the following definition from the last chapter:

childSong6 = let t = (dhn/qn) ∗ (69/120)
in instrument RhodesPiano

(tempo t (bassLine :=:mainVoice))
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We can rewrite the last few lines a bit more clearly as follows:

childSong6 = let t = (dhn/qn) ∗ (69/120)
in instrument RhodesPiano $

tempo t $
bassLine :=:mainVoice

Or, on a single line, instead of:

instrument RhodesPiano (tempo t (bassLine :=:mainVoice))

we can write:

instrument RhodesPiano $ tempo t $ bassLine :=:mainVoice

Exercise 5.5 The last definition of hList still has an argument d on the
left-hand side, and one occurence of d on the right-hand side. Is there some
way to eliminate it using currying simplification? (Hint: the answer is yes,
but the solution is a bit perverse, and is not recommended as a way to write
your code!)

Exercise 5.6 Use line, map and ($) to give a concise definition of addDur .

Exercise 5.7 Rewrite this example:

map (λx → (x + 1)/2) xs

using a composition of sections.

Exercise 5.8 Consider the expression:

map f (map g xs)

Rewrite this using function composition and a single call to map. Then
rewrite the earlier example:

map (λx → (x + 1)/2) xs

as a “map of a map” (i.e. using two maps).

Exercise 5.9 Go back to any exercises prior to this chapter, and simplify
your solutions using ideas learned here.

Exercise 5.10 Using higher-order functions introduced in this chapter, fill
in the two missing functions, f1 and f2, in the evaluation below so that it is
valid:

f1 (f2 (∗) [1, 2, 3, 4]) 5⇒ [5, 10, 15, 20]



Chapter 6

More Music

module Euterpea.Music.Note.MoreMusic where
import Euterpea.Music.Note.Music

This chapter explores a number of simple musical ideas, and contributes
to a growing collection of Euterpea functions for expressing those ideas.

6.1 Delay and Repeat

We can delay the start of a music value simply by inserting a rest in front
of it, which can be packaged in a function as follows:

delayM :: Dur → Music a → Music a
delayM d m = rest d :+:m

With delayM it is easy to write canon-like structures such asm:=:delayM d m,
a song written in rounds (see Exercise 3.14), and so on.

Recall from Chapter 4 the function timesM that repeats a musical phrase
a certain number of times:

timesM :: Int → Music a → Music a
timesM 0 m = rest 0
timesM n m = m :+: timesM (n − 1) m

More interestingly, Haskell’s non-strict semantics allows us to define in-
finite musical values. For example, a musical value may be repeated ad
nauseam using this simple function:

87



CHAPTER 6. MORE MUSIC 88

repeatM ::Music a → Music a
repeatM m = m :+: repeatM m

Thus, for example, an infinite ostinato can be expressed in this way, and then
used in different contexts that automatically extract only the portion that
is actually needed. Functions that create such contexts will be described
shortly.

6.2 Inversion and Retrograde

The notions of inversion, retrograde, retrograde inversion, etc. as used in
twelve-tone theory are also easily captured in Euterpea. These terms are
usually applied only to a “line” of notes, i.e. a melody (in twelve-tone theory
it is called a “row”). The retrograde of a line is simply its reverse—i.e. the
notes played in the reverse order. The inversion of a line is with respect
to a given pitch (by convention usually the first pitch), where the intervals
between successive pitches are inverted, i.e. negated. If the absolute pitch
of the first note is ap, then each pitch p is converted into an absolute pitch
ap − (absPitch p − ap), in other words 2 ∗ ap − absPitch p.

To do all this in Haskell, a transformation from a line created by line to
a list is defined:

lineToList ::Music a → [Music a ]
lineToList (Prim (Rest 0)) = [ ]
lineToList (n :+: ns) = n : lineToList ns
lineToList =

error "lineToList: argument not created by function line"

Using this function it is then straightforward to define invert :

invert ::Music Pitch → Music Pitch
invert m =

let l@(Prim (Note r) : ) = lineToList m
inv (Prim (Note d p)) =

note d (pitch (2 ∗ absPitch r − absPitch p))
inv (Prim (Rest d)) = rest d

in line (map inv l)
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Figure 6.1: A Simple Melody and Four Transformations

Details: The pattern l@(Prim (Note r) : ) is called an as pattern. It behaves

just like the pattern Prim (Note r) : but additionally binds l to the value of a

successful match to that pattern. l can then be used wherever it is in scope, such

as in the last line of the function definition.

With lineToList and invert it is then easy to define the remaining func-
tions via composition:

retro, retroInvert , invertRetro ::Music Pitch → Music Pitch
retro = line ◦ reverse ◦ lineToList
retroInvert = retro ◦ invert
invertRetro = invert ◦ retro

As an example of these concepts, Figure 6.1 shows a simple melody (not
a complete twelve-tone row) and four transformations of it.

Exercise 6.1 Show that retro ◦ retro, invert ◦ invert , and retroInvert ◦
invertRetro are the identity on values created by line. (You may use the
lemma that reverse (reverse l) = l .)

Exercise 6.2 Define a function properRow ::Music Pitch → Bool that de-
termines whether or not its argument is a “proper” twelve-tone row, mean-
ing that: (a) it must have exactly twelve notes, and (b) each unique pitch
class is used exactly once (regardless of the octave). Enharmonically equiv-
alent pitch classes are not considered unique. You may assume that the
Music Pitch value is generated by the function line, but note that rests are
allowed.

Exercise 6.3 Define a function palin ::Music Pitch → Bool that determines
whether or not a given line (as generated by the line function) is a palin-
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Figure 6.2: Nested Polyrhythms (top: pr1; bottom: pr2)

drome or not. You should ignore rests, and disregard note durations—the
main question is whether or not the melody is a palindrome.

Exercise 6.4 Define a function retroPitches ::Music Pitch → Music Pitch
that reverses the pitches in a line, but maintains the durations in the same
order from beginning to end. For example:

retroPitches (line [c 4 en, d 4 qn ])
=⇒ (line [d 4 en, c 4 qn ])

6.3 Polyrhythms

For some rhythmical ideas, first note that if m is a line of three eighth notes,
then tempo (3/2) m is a triplet of eighth notes (recall that this idea was used
in Chapter 4). In fact tempo can be used to create quite complex rhythmical
patterns. For example, consider the “nested polyrhythms” shown in Figure
6.2. They can be expressed naturally in Euterpea as follows (note the use
of a let clause in pr2 to capture recurring phrases):

pr1, pr 2 :: Pitch → Music Pitch
pr1 p = tempo (5/6)

(tempo (4/3) (mkLn 1 p qn :+:
tempo (3/2) (mkLn 3 p en :+:

mkLn 2 p sn :+:
mkLn 1 p qn) :+:
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mkLn 1 p qn) :+:
tempo (3/2) (mkLn 6 p en))
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pr2 p =
let m1 = tempo (5/4) (tempo (3/2) m2 :+:m2)

m2 = mkLn 3 p en
in tempo (7/6) (m1 :+:

tempo (5/4) (mkLn 5 p en) :+:
m1 :+:
tempo (3/2) m2)

mkLn :: Int → p → Dur → Music p
mkLn n p d = line $ take n $ repeat $ note d p

Details: take n lst is the first n elements of the list lst . For example:

take 3 [C ,Cs ,Df ,D ,Ds ] =⇒ [C ,Cs ,Df ]

repeat x is the infinite list of the same value x . For example:

take 3 (repeat 42) =⇒ [42, 42, 42]

To play polyrhythms pr 1 and pr2 in parallel using middle C and middle
G, respectively, we can write:

pr12 ::Music Pitch
pr12 = pr 1 (C , 4) :=: pr2 (G , 4)

6.4 Symbolic Meter Changes

We can implement the notion of “symbolic meter changes” of the form “old-
note = newnote” (quarter note = dotted eighth, for example) by defining
an infix function:

(=:=) ::Dur → Dur → Music a → Music a
old =:= new = tempo (new /old)

Of course, using the new function is not much shorter than using tempo
directly, but it may have mnemonic value.
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6.5 Computing Duration

It is often desirable to compute the duration, in whole notes, of a musical
value; we can do so as follows:

dur ::Music a → Dur
dur (Prim (Note d )) = d
dur (Prim (Rest d)) = d
dur (m1 :+:m2) = dur m1 + dur m2

dur (m1 :=:m2) = dur m1 ‘max ‘ dur m2

dur (Modify (Tempo r) m) = dur m/r
dur (Modify m) = dur m

The duration of a primitive value is obvious. The duration of m1 :+:m2 is the
sum of the two, and the duration of m1 :=:m2 is the maximum of the two.
The only tricky case is the duration of a music value that is modified by the
Tempo atttribute—in this case the duration must be scaled appropriately.

Note that the duration of a music value that is conceptually infinite in
duration will be ⊥, since dur will not terminate. (Similary, taking the length
of an infinite list is ⊥.) For example:

dur (repeatM (a 4 qn))
⇒ dur (a 4 qn :+: repeatM (a 4 qn))
⇒ dur (a 4 qn) + dur (repeatM (a 4 qn))
⇒ qn + dur (repeatM (a 4 qn))
⇒ qn + qn + dur (repeatM (a 4 qn))
⇒ ...
⇒ ⊥

6.6 Super-retrograde

Using dur we can define a function revM that reverses any Music value
whose duration is finite (and is thus considerably more useful than retro
defined earlier):
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revM ::Music a → Music a
revM n@(Prim ) = n
revM (Modify c m) = Modify c (revM m)
revM (m1 :+:m2) = revM m2 :+: revM m1

revM (m1 :=:m2) =
let d1 = dur m1

d2 = dur m2

in if d1 > d2 then revM m1 :=: (rest (d1 − d2) :+: revM m2)
else (rest (d2 − d1) :+: revM m1) :=: revM m2

The first three cases are easy, but the last case is a bit tricky. The
parallel constructor (:=:) implicitly begins each of its music values at the
same time. But if one is shorter than the other, then, when reversed, a rest
must be inserted before the shorter one, to account for the difference.

Note that revM of a Music value whose duration is infinite is ⊥. (Anal-
ogously, reversing an infinite list is ⊥.)

6.7 takeM and dropM

Two other useful operations on Music values is the ability to “take” the
first so many beats (in whole notes), discarding the rest, and conversely, the
ability to “drop” the first so many beats, returning what is left. We will first
define a function takeM ::Dur → Music a → Music a such that takeM d m
is a prefix of m having duration d . In other words, it “takes” only the first
d beats (in whole notes) of m. We can define this function as follows:

takeM ::Dur → Music a → Music a
takeM d m | d 6 0 = rest 0
takeM d (Prim (Note oldD p)) = note (min oldD d) p
takeM d (Prim (Rest oldD)) = rest (min oldD d)
takeM d (m1 :=:m2) = takeM d m1 :=: takeM d m2

takeM d (m1 :+:m2) = let m ′
1 = takeM d m1

m ′
2 = takeM (d − dur m ′

1) m2

in m ′
1 :+:m

′
2

takeM d (Modify (Tempo r) m) = tempo r (takeM (d ∗ r) m)
takeM d (Modify c m) = Modify c (takeM d m)

This definition is fairly straightforward, except for the case of sequential
composition, where two cases arise: (1) if d is greater than dur m1, then
we return all of m1 (i.e. m ′

1 = m1), followed by d − dur m ′
1 beats of m2,
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and (2) if d is less than dur m1, then we return d beats of m1 (i.e. m ′
1),

followed by nothing (since d−dur m ′
1 will be zero). Note that this strategy

will work even if m1 or m2 is infinite.

Similarly, we can define a function dropM ::Dur → Music a → Music a
such that dropM d m is a suffix of m where the first d beats (in whole
notes) of m have been “dropped:”

dropM :: Dur → Music a → Music a
dropM d m | d 6 0 = m
dropM d (Prim (Note oldD p)) = note (max (oldD − d) 0) p
dropM d (Prim (Rest oldD)) = rest (max (oldD − d) 0)
dropM d (m1 :=:m2) = dropM d m1 :=: dropM d m2

dropM d (m1 :+:m2) = let m ′
1 = dropM d m1

m ′
2 = dropM (d − dur m1) m2

in m ′
1 :+:m

′
2

dropM d (Modify (Tempo r) m) = tempo r (dropM (d ∗ r) m)
dropM d (Modify c m) = Modify c (dropM d m)

This definition is also straightforward, except for the case of sequential com-
position. Again, two cases arise: (1) if d is greater than dur m1, then we
drop m1 altogether (i.e. m ′

1 will be rest 0), and simply drop d − dur m1

from m2, and (2) if d is less than dur m1, then we return m ′
1 followed by

all of m2 (since d − dur m1 will be negative). This definition too will work
for infinite values of m1 or m2.

6.8 Removing Zeros

Note that functions such as timesM , line, revM , takeM and dropM occa-
sionally insert rests of zero duration, and in the case of takeM and dropM ,
may insert notes of zero duration. Doing this makes the code simpler and
more elegant, and since we cannot hear the effect of the zero-duration events,
the musical result is the same.

On the other hand, these extraneous notes and rests (which we will call
“zeros”) can be annoying when viewing the textual (rather than audible)
representation of the result. To alleviate this problem, we define a function
that removes them from a given Music value:



CHAPTER 6. MORE MUSIC 96

removeZeros ::Music a → Music a
removeZeros (Prim p) = Prim p
removeZeros (m1 :+:m2) =

let m ′
1 = removeZeros m1

m ′
2 = removeZeros m2

in case (m ′
1,m

′
2) of

(Prim (Note 0 p),m)→ m
(Prim (Rest 0),m) → m
(m,Prim (Note 0 p))→ m
(m,Prim (Rest 0)) → m
(m1,m2) → m1 :+:m2

removeZeros (m1 :=:m2) =
let m ′

1 = removeZeros m1

m ′
2 = removeZeros m2

in case (m ′
1,m

′
2) of

(Prim (Note 0 p),m)→ m
(Prim (Rest 0),m) → m
(m,Prim (Note 0 p))→ m
(m,Prim (Rest 0)) → m
(m1,m2) → m1 :=:m2

removeZeros (Modify c m) = Modify c (removeZeros m)

Details: A case expression can only match against one value. To match against

more than one value, we can place them in a tuple of the appropriate length. In

the case above, removeZeros matches against m ′

1 and m ′

2 by placing them in a

pair (m ′

1,m
′

2).

This function depends on the “musical axioms” that ifm1 in either m1 :+:
m2 or m1 :=:m2 is a zero, then the latter expressions are equivalent to just
m2. Similarly, if m2 is a zero, they are equivalent to just m1. Although
intuitive, a formal proof of these axioms is deferred until Chapter 11.

As an example of using removeZeros , consider the Music value:

m = c 4 en :+: repeatM (d 4 en)
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Then note that:

takeM hn (dropM hn m)
=⇒
Prim (Note (0 % 1) (C , 4)) :+: (Prim (Note (0 % 1) (D , 4)) :+:
(Prim (Note (0 % 1) (D , 4)) :+: (Prim (Note (0 % 1) (D , 4)) :+:
(Prim (Note (1 % 8) (D , 4)) :+: (Prim (Note (1 % 8) (D , 4)) :+:
(Prim (Note (1 % 8) (D , 4)) :+: (Prim (Note (1 % 8) (D , 4)) :+:
Prim (Rest (0 % 1)))))))))

Note the zero-duration notes and rests. But if we apply removeZeros to the
result we get:

removeZeros (takeM hn (dropM hn m))
=⇒
Prim (Note (1 % 8) (D , 4)) :+: (Prim (Note (1 % 8) (D , 4)) :+:
(Prim (Note (1 % 8) (D , 4)) :+: Prim (Note (1 % 8) (D , 4))))

Both the zero-duration rests and notes have been removed.

6.9 Truncating Parallel Composition

The duration of m1 :=:m2 is the maximum of the durations of m1 and m2

(and thus if one is infinite, so is the result). However, sometimes it is useful
to have the result be of duration equal to the shorter of the two. Defining
a function to achieve this is not as easy as it sounds, since it may require
truncating the longer one in the middle of a note (or notes), and it may be
that one (or both) of the Music values is infinite.

The goal is to define a “truncating parallel composition” operator (/=:)::
Music a → Music a → Music a. Using takeM , we can make an initial
attempt at a suitable definition for (/=:) as follows:

(/=:) ::Music a → Music a → Music a
m1 /=:m2 = takeM (dur m2) m1 :=: takeM (dur m1) m2

Unfortunately, whereas takeM can handle infinite-duration music values,
(/=:) cannot. This is because (/=:) computes the duration of both of its
arguments, but if one of them, say m1, has infinite duration, then dur m1 ⇒
⊥. If, in a particular context, we know that only one of the two arguments
is infinite, and we know which one (say m1), it is always possible to write:

takeM (dur m2) m1 :=:m2

But somehow this seems unsatisfactory.
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6.9.1 Lazy Evaluation to the Rescue

The root of this problem is that dur uses a conventional number type,
namely the type Rational (which is a ratio of Integers), to compute with,
which does not have a value for infinity (⊥ is not the same as infinity!). But
what if we were to somehow compute the duration lazily—meaning that we
only compute that much of the duration that is needed to perform some
arithmetic result of interest. In particular, if we have one number n that we
know is “at least” x , and another number m that is exactly y , then if x > y ,
we know that n >m, even if n’s actual value is infinity!

To realize this idea, let’s first define a type synonym for “lazy durations:”

type LazyDur = [Dur ]

The intent is that a value d :: LazyDur is a non-decreasing list of durations
such that the last element in the list is the actual duration, and an infinite
list implies an infinite duration.

Now let’s define a new verion of dur that computes the LazyDur of its
argument:

durL ::Music a → LazyDur
durL m@(Prim ) = [dur m ]
durL (m1 :+:m2) = let d1 = durL m1

in d1 ++map (+(last d1)) (durL m2)
durL (m1 :=:m2) = mergeLD (durL m1) (durL m2)
durL (Modify (Tempo r) m) = map (/r) (durL m)
durL (Modify m) = durL m

where mergeLD merges two LazyDur values into one:

mergeLD :: LazyDur → LazyDur → LazyDur
mergeLD [ ] ld = ld
mergeLD ld [ ] = ld
mergeLD ld1@(d1 : ds1) ld2@(d2 : ds2) =

if d1 < d2 then d1 :mergeLD ds1 ld2

else d2 :mergeLD ld1 ds2

We can then define a functionminL to compare a LazyDur with a regular
Dur , returning the least Dur as a result:

minL :: LazyDur → Dur → Dur
minL [ ] d ′ = d ′

minL [d ] d ′ = min d d ′

minL (d : ds) d ′ = if d < d ′ then minL ds d ′ else d ′
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And with minL we can then define a new version of takeM :

takeML :: LazyDur → Music a → Music a
takeML [ ] m = rest 0
takeML (d : ds) m | d 6 0 = takeML ds m
takeML ld (Prim (Note oldD p)) = note (minL ld oldD) p
takeML ld (Prim (Rest oldD)) = rest (minL ld oldD)
takeML ld (m1 :=:m2) = takeML ld m1 :=: takeML ld m2

takeML ld (m1 :+:m2) =
let m ′

1 = takeML ld m1

m ′
2 = takeML (map (λd → d − dur m ′

1) ld) m2

in m ′
1 :+:m

′
2

takeML ld (Modify (Tempo r) m) = tempo r (takeML (map (∗r) ld) m)
takeML ld (Modify c m) = Modify c (takeML ld m)

Compare this definition with that of takeM—they are very similar.

Finally, we can define a correct (meaning it works properly on infinite
Music values) version of (/=:) as follows:

(/=:) ::Music a → Music a → Music a
m1 /=:m2 = takeML (durL m2) m1 :=: takeML (durL m1) m2

Whew! This may seem like a lot of effort, but the new code is actually
not much different from the old, and now we can freely use (/=:) without
worrying about which if any of its arguments are infinite.

Exercise 6.5 Try using (/=:) with some infinite Music values (such as
created by repeatM ) to assure yourself that it works properly. When using
it with two infinite values, it should return an infinite value, which you can
test by applying takeM to the result.

6.10 Trills

A trill is an ornament that alternates rapidly between two (usually adjacent)
pitches. Two versions of a trill function will be defined, both of which
take the starting note and an interval for the trill note as arguments (the
interval is usually one or two, but can actually be anything). One version
will additionally have an argument that specifies how long each trill note
should be, whereas the other will have an argument that specifies how many
trills should occur. In both cases the total duration will be the same as the
duration of the original note.
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Here is the first trill function:

trill :: Int → Dur → Music Pitch → Music Pitch
trill i sDur (Prim (Note tDur p)) =

if sDur > tDur then note tDur p
else note sDur p :+:

trill (negate i) sDur
(note (tDur − sDur) (trans i p))

trill i d (Modify (Tempo r) m) = tempo r (trill i (d ∗ r) m)
trill i d (Modify c m) = Modify c (trill i d m)
trill =

error "trill: input must be a single note."

Using this function it is simple to define a version that starts on the trill
note rather than the start note:

trill ′ :: Int → Dur → Music Pitch → Music Pitch
trill ′ i sDur m = trill (negate i) sDur (transpose i m)

The second way to define a trill is in terms of the number of subdivided
notes to be included in the trill. We can use the first trill function to define
this new one:

trilln :: Int → Int → Music Pitch → Music Pitch
trilln i nTimes m = trill i (dur m/fromIntegral nTimes) m

This, too, can be made to start on the other note.

trilln ′ :: Int → Int → Music Pitch → Music Pitch
trilln ′ i nTimes m = trilln (negate i) nTimes (transpose i m)

Finally, a roll can be implemented as a trill whose interval is zero. This
feature is particularly useful for percussion.

roll ::Dur → Music Pitch → Music Pitch
rolln :: Int → Music Pitch → Music Pitch

roll dur m = trill 0 dur m
rolln nTimes m = trilln 0 nTimes m

Figure 6.3 shows a nice use of the trill functions in encoding the opening
lines of John Philip Sousa’s Stars and Stripes Forever.

Details: ssfMel uses a where clause, which is similar to a let expression, except

that the equations appear after the result, rather than before.
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ssfMel ::Music Pitch
ssfMel = line (l1 ++ l2 ++ l3 ++ l4)

where l1 = [trilln 2 5 (bf 6 en), ef 7 en, ef 6 en, ef 7 en ]
l2 = [bf 6 sn, c 7 sn , bf 6 sn, g 6 sn, ef 6 en, bf 5 en ]
l3 = [ef 6 sn, f 6 sn, g 6 sn, af 6 sn , bf 6 en, ef 7 en ]
l4 = [trill 2 tn (bf 6 qn), bf 6 sn, denr ]

starsAndStripes ::Music Pitch
starsAndStripes = instrument Flute ssfMel

Figure 6.3: Trills in Stars and Stripes Forever

6.11 Grace Notes

Recall from Chapter 4 the function graceNote to generate grace notes. A
more general version is defined below, which takes a Rational argument
that specifies that fraction of the principal note’s duration to be used for
the grace note’s duration:

grace :: Int → Rational → Music Pitch → Music Pitch
grace n r (Prim (Note d p)) =

note (r ∗ d) (trans n p) :+: note ((1− r) ∗ d) p
grace n r =

error "grace: can only add a grace note to a note"

Thus grace n r (note d p) is a Music value consisting of two notes, the first
being the grace note whose duration is r ∗ d and whose pitch is n semitones
higher (or lower if n is negative) than p, and the second being the principal
note at pitch p but now with duration (1− r) ∗ d .

Note that grace places the downbeat of the grace note at the point
written for the principal note. Sometimes the interpretation of a grace
note is such that the downbeat of the principal note is to be unchanged. In
that case, the grace note reduces the duration of the previous note. We can
define a function grace2 that takes two notes as arguments, and places the
grace note appropriately:

grace2 :: Int → Rational →
Music Pitch → Music Pitch → Music Pitch
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grace2 n r (Prim (Note d1 p1)) (Prim (Note d2 p2)) =
note (d1 − r ∗ d2) p1 :+: note (r ∗ d2) (trans n p2) :+: note d2 p2

grace2 =
error "grace2: can only add a grace note to a note"

Exercise 6.6 Related to trills and grace notes in Western classical music
are the notions of mordent, turn, and appoggiatura. Define functions to
realize these musical ornamentations.

6.12 Percussion

Percussion is a difficult notion to represent in the abstract. On one hand,
a percussion instrument is just another instrument, so why should it be
treated differently? On the other hand, even common practice notation
treats it specially, although it has much in common with non-percussive
notation. The MIDI standard is equally ambiguous about the treatment
of percussion: on one hand, percussion sounds are chosen by specifying an
octave and pitch, just like any other instrument; on the other hand, these
pitches have no tonal meaning whatsoever: they are just a convenient way to
select from a large number of percussion sounds. Indeed, part of the General
MIDI Standard is a set of names for commonly used percussion sounds.

Since MIDI is such a popular platform, it is worth defining some handy
functions for using the General MIDI Standard. In Figure 6.4 a data type
is defined that borrows its constructor names from the General MIDI stan-
dard. The comments reflecting the “MIDI Key” numbers will be explained
later, but basically a MIDI Key is the equivalent of an absolute pitch in
Euterpea terminology. So all that remains to be done is a way to convert
these percussion sound names into a Music value; i.e. a Note:

perc :: PercussionSound → Dur → Music Pitch
perc ps dur = note dur (pitch (fromEnum ps + 35))
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data PercussionSound =
AcousticBassDrum -- MIDI Key 35
| BassDrum1 -- MIDI Key 36
| SideStick -- ...
| AcousticSnare | HandClap | ElectricSnare | LowFloorTom
| ClosedHiHat | HighFloorTom | PedalHiHat | LowTom
| OpenHiHat | LowMidTom | HiMidTom | CrashCymbal1
| HighTom | RideCymbal1 | ChineseCymbal | RideBell
| Tambourine | SplashCymbal | Cowbell | CrashCymbal2
| Vibraslap | RideCymbal2 | HiBongo | LowBongo
| MuteHiConga | OpenHiConga | LowConga | HighTimbale
| LowTimbale | HighAgogo | LowAgogo | Cabasa
| Maracas | ShortWhistle | LongWhistle | ShortGuiro
| LongGuiro | Claves | HiWoodBlock | LowWoodBlock
| MuteCuica | OpenCuica | MuteTriangle
| OpenTriangle -- MIDI Key 82

Figure 6.4: General MIDI Percussion Names



CHAPTER 6. MORE MUSIC 104

Details: fromEnum is an operator in the Enum class, which is all about enu-

merations, and will be discussed in more detail in Chapter 7. A data type that is a

member of this class can be enumerated—i.e. the elements of the data type can

be listed in order. fromEnum maps each value to its index in this enumeration.

Thus fromEnum AcousticBassDrum is 0, fromEnum BassDrum1 is 1, and so

on.

If a Music value returned from perc is played using a piano sound, then
you will get a piano sound. But if you specify the instrument Percussion ,
MIDI knows to play the apppropriate PercussionSound .

Recall the InstrumentName data type from Chapter 2. If a Music value
returned from perc is played using, say, the AcousticGrandPiano instru-
ment, then you will hear an acounstic grand piano sound at the appropriate
pitch. But if you specify the Percussion instrument, then you will hear the
percussion sound that was specified as an argument to perc.

For example, here are eight bars of a simple rock or “funk groove” that
uses perc and roll :

funkGroove ::Music Pitch
funkGroove

= let p1 = perc LowTom qn
p2 = perc AcousticSnare en

in tempo 3 $ instrument Percussion $ takeM 8 $ repeatM
((p1 :+: qnr :+: p2 :+: qnr :+: p2 :+:
p1 :+: p1 :+: qnr :+: p2 :+: enr)
:=: roll en (perc ClosedHiHat 2))

Exercise 6.7 Write a program that generates all of the General MIDI per-
cussion sounds, playing through each of them one at a time.

Exercise 6.8 Find a drum beat that you like, and express it in Euterpea.
Then use repeatM , takeM , and (:=:) to add a simple melody to it.

6.13 A Map for Music

Recall from Chapter 3 the definition of map:
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map :: (a → b)→ [a ]→ [b ]
map f [ ] = [ ]
map f (x : xs) = f x :map f xs

This function is defined on the list data type. Is there something analogous
for Music? I.e. a function:1

mMap :: (a → b)→ Music a → Music b

Such a function is indeed straightforward to define, but it helps to first define
a map-like function for the Primitive type:

pMap :: (a → b)→ Primitive a → Primitive b
pMap f (Note d x ) = Note d (f x )
pMap f (Rest d) = Rest d

With pMap in hand we can now define mMap:

mMap :: (a → b)→ Music a → Music b
mMap f (Prim p) = Prim (pMap f p)
mMap f (m1 :+:m2) = mMap f m1 :+:mMap f m2

mMap f (m1 :=:m2) = mMap f m1 :=:mMap f m2

mMap f (Modify c m) = Modify c (mMap f m)

Just as map f xs for lists replaces each polymorphic element x in xs with
f x , mMap f m for Music replaces each polymorphic element p in m with
f p.

As an example of how mMap can be used, let’s introduces a Volume
type for a note:

type Volume = Int

The goal is to convert a value of type Music Pitch into a value of type
Music (Pitch,Volume)—that is, to pair each pitch with a volume attribute.
We can define a function to do so as follows:

addVolume :: Volume → Music Pitch → Music (Pitch,Volume)
addVolume v = mMap (λp → (p, v))

For MIDI, the variable v can range from 0 (softest) to 127 (loudest).

For example, compare the loudness of these two phrases:

m1,m2 ::Music (Pitch,Volume)
m1 = addVolume 100 (c 4 qn :+: d 4 qn :+: e 4 qn :+: c 4 qn)

1The name mapM would perhaps have been a better choice here, to be consistent with
previous names. However, mapM is a predefined function in Haskell, and thus mMap is
used instead. Similarly, Haskell’s Monad library defines a function foldM , and thus in the
next section the name mFold is used instead.
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m2 = addVolume 30 (c 4 qn :+: d 4 qn :+: e 4 qn :+: c 4 qn)

using the play function. (Recall from Section 2.3 that the type of the argu-
ment to play must be made clear, as is done here with the type signature.)

Details: Note that the name Volume is used both as a type synonym and as a

constructor—Haskell allows this, since they can always be distinguished by context.

Exercise 6.9 Using mMap, define a function:

scaleVolume ::Rational → Music (Pitch,Volume)
→ Music (Pitch,Volume)

such that scaleVolume s m scales the volume of each note in m by the factor
s.

(This problem requires multiplying a Rational number by an Int (i.e.
Volume). To do this, some coercions between number types are needed,
which in Haskell is done using qualified types, which are discussed in Chap-
ter 7. For now, you can simply do the following: If v is the volume of a
note, then round (s ∗ fromIntegral v) is the desired scaled volume.)
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6.14 A Fold for Music

We can also define a fold-like operator for Music. But whereas the list
data type has only two constructors (the nullary constructor [ ] and the
binary constructor (:)), Music has four constructors (Prim , (:+:), (:=:),
and Modify). Thus the following function takes four arguments in addition
to the Music value it is transforming, instead of two:

mFold :: (Primitive a → b)→ (b → b → b)→ (b → b → b)→
(Control → b → b)→ Music a → b

mFold f (+:) (=:) g m =
let rec = mFold f (+:) (=:) g
in case m of
Prim p → f p
m1 :+:m2 → rec m1 +: rec m2

m1 :=:m2 → rec m1 =: rec m2

Modify c m → g c (rec m)

This somewhat unwieldy function basically takes apart a Music value and
puts it back together with different constructors. Indeed, note that:

mFold Prim (:+:) (:=:) Modify m == m

Although intuitive, proving this property requires induction, a proof tech-
nique discussed in Chapter 10.

To see how mFold might be used, note first of all that it is more general
than mMap—indeed, mMap can be defined in terms of mFold like this:

mMap :: (a → b)→ Music a → Music b
mMap f = mFold g (:+:) (:=:) Modify where

g (Note d x ) = note d (f x )
g (Rest d) = rest d

More interestingly, we can use mFold to more succinctly define functions
such as dur from Section 6.5:

dur ::Music a → Dur
dur = mFold getDur (+) max modDur where

getDur (Note d ) = d
getDur (Rest d) = d
modDur (Tempo r) d = d/r
modDur d = d

Exercise 6.10 Redefine revM from Section 6.6 using mFold .
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Exercise 6.11 Define a function insideOut that inverts the role of serial
and parallel composition in a Music value. Using insideOut , see if you
can (a) find a non-trivial value m :: Music Pitch such that m is “musically
equivalent” to (i.e. sounds the same as) insideOut m and (b) find a value
m ::Music Pitch such that m :+: insideOut m :+:m sounds interesting. (You
are free to define what “sounds interesting” means.)

6.15 Crazy Recursion

With all the functions and data types that have been defined, and the power
of recursion and higher-order functions well understood, we can start to do
some wild and crazy things with music. Here is just one such idea.

The goal is to define a function to recursively apply transformations f
(to elements in a sequence) and g (to accumulated phrases) some specified
number of times:

rep :: (Music a → Music a)→ (Music a → Music a)→ Int
→ Music a → Music a

rep f g 0 m = rest 0
rep f g n m = m :=: g (rep f g (n − 1) (f m))

With this simple function we can create some interesting phrases of music
with very little code. For example, rep can be used three times, nested
together, to create a “cascade” of sounds:

run = rep (transpose 5) (delayM tn) 8 (c 4 tn)
cascade = rep (transpose 4) (delayM en) 8 run
cascades = rep id (delayM sn) 2 cascade

We can then make the cascade run up, and then down:

final = cascades :+: revM cascades

What happens if the f and g arguments are reversed?

run ′ = rep (delayM tn) (transpose 5) 8 (c 4 tn)
cascade ′ = rep (delayM en) (transpose 4) 8 run ′

cascades ′ = rep (delayM sn) id 2 cascade ′

final ′ = cascades ′ :+: revM cascades ′
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Exercise 6.12 Consider this sequence of 8 numbers:

s1 = [1, 5, 3, 6, 5, 0, 1, 1]

We might interpret this as a sequence of pitches, i.e. a melody. Another way
to represent this sequence is as a sequence of 7 intervals:

s2 = [4,−2, 3,−1,−5, 1, 0]
Together with the starting pitch (i.e. 1), this sequence of intervals can be
used to reconstruct the original melody. But, with a suitable transposition
to eliminate negative numbers, it can also be viewed as another melody.
Indeed, we can repeat the process: s2 can be represented by this sequence
of 6 intervals:

s3 = [−6, 5,−4,−4, 6,−1]
Together with the starting number (i.e. 4), s3 can be used to reconstruct s2.
Continuing the process:

s4 = [11,−9, 0, 10,−7]
s5 = [−20, 9, 10,−17]
s6 = [29, 1,−27]
s7 = [−28,−28]
s8 = [0]

Now, if we take the first element of each of these sequences to form this
8-number sequence:

ic = [0,−28, 29,−20, 11,−6, 4, 1]
then it alone can be used to re-create the original 8-number sequence in its
entirety. Of course, it can also be used as the original melody was used, and
we could derive another 8-note sequence from it—and so on. The list ic will
be referred to as the “interval closure” of the original list s1.

Your job is to:

a) Define a function toIntervals that takes a list of n numbers, and generates
a list of n lists, such that the ith list is the sequence si as defined above.

b) Define a function getHeads that takes a list of n lists and returns a list
of n numbers such that the ith element is the head of the ith list.

c) Compose the above two functions in a suitable way to define a func-
tion intervalClosure that takes an n-element list and returns its interval
closure.

d) Define a function intervalClosures that takes an n-element list and re-
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turns an infinite sequence of interval closures.

e) Now for the open-ended part of this exercise: Interpret the outputs of
any of the functions above to create some “interesting” music.

Exercise 6.13 Write a Euterpea program that sounds like an infinitely
descending (in pitch) sequence of musical lines. Each descending line should
fade into the audible range as it begins its descent, and then fade out as
it descends further. So the beginning and end of each line will be difficult
to hear. And there will be many such lines, each starting at a different
time, some perhaps descending a little faster than others, or perhaps using
different instrument sounds, and so on. The effect will be that as the music
is listened to, everything will seem to be falling, falling, falling with no end,
but no beginning either. (This illusion is called the Shepard Tone, or Shepard
Scale, first introduced by Roger Shepard in 1964 [She64].)

Use high-order functions, recursion, and whatever other abstraction tech-
niques you have learned to write an elegant solution to this problem. Try to
parameterize things in such a way that, for example, with a simple change,
you could generate an infinite ascension as well. The Volume constructor in
the NoteAttribute type, as used in the definition of addVol , should be used
to set the volumes.

Exercise 6.14 Do something wild and crazy with Euterpea.



Chapter 7

Qualified Types and Type
Classes

This chapter introduces the notions of qualified types and type classes. These
concepts can be viewed as a refinement of the notion of polymorphism, and
increase the ability to write modular programs.

7.1 Motivation

A polymorphic type such as (a → a) can be viewed as shorthand for ∀(a)a →
a, which can be read “for all types a, functions mapping elements of type
a to elements of type a.” Note the emphasis on “for all.”

In practice, however, there are times when we would prefer to limit a
polymorphic type to a smaller number of possibilities. A good example is
a function such as (+). It is probably not a good idea to limit (+) to a
single (that is, monomorphic) type such as Integer → Integer → Integer ,
since there are other kinds of numbers—such as rational and floating-point
numbers—that we would like to perform addition on as well. Nor is it a good
idea to have a different addition function for each number type, since that
would require giving each a different name, such as addInteger , addRational ,
addFloat , etc. And, unfortunately, giving (+) a type such as a → a → a
will not work, since this would imply that we could add things other than
numbers, such as characters, pitch classes, lists, tuples, functions, and any
type that we might define on our own!

Haskell provides a solution to this problem through the use of qualified

111
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types. Conceptually, it is helpful to think of a qualified type just as a poly-
morphic type, except that in place of “for all types a” it will be possible to
say “for all types a that are members of the type class C ,” where the type
class C can be thought of as a set of types. For example, suppose there
is a type class Num with members Integer , Rational , and Float . Then an
accurate type for (+) would be ∀(a∈Num)a → a → a. But in Haskell,
instead of writing ∀(a ∈ Num) · · · , the notation Num a ⇒· · · is used. So
the proper type signature for (+) is:

(+) :: Num a ⇒ a → a → a

which should be read: “for all types a that are members of the type class
Num, (+) has type a → a → a.” Members of a type class are also called
instances of the class, and these two terms will be used interchangeably in
the remainder of the text. The Num a ⇒· · · part of the type signature is
often called a context, or constraint.

Details: It is important not to confuse Num with a data type or a constructor

within a data type, even though the same syntax (“Num a”) is used. Num is

a type class, and the context of its use (namely, to the left of a ⇒) is always

sufficient to determine this fact.

Recall now the type signature given for the function simple in Chapter 1:

simple :: Integer → Integer → Integer → Integer
simple x y z = x ∗ (y + z )

Note that simple uses the operator (+) discussed above. It also uses (∗),
whose type is the same as that for (+):

(∗) :: Num a ⇒ a → a → a

This suggests that a more general type for simple is:

simple :: Num a ⇒ a → a → a → a
simple x y z = x ∗ (y + z )

Indeed, this is the preferred, most general type that can be given for simple .
It can now be used with any type that is a member of the Num class, which
includes Integer , Int , Rational , Float and Double, among others.

The ability to qualify polymorphic types is a unique feature of Haskell,
and, as we will soon see, provides great expressiveness. In the following
sections the idea is explored much more thoroughly, and in particular it is
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shown how a programmer can define his or her own type classes and their
instances. To begin, let’s take a closer look at one of the pre-defined type
classes in Haskell, having to do with equality.

7.2 Equality

Equality between two expressions e1 and e2 in Haskell means that the value
of e1 is the same as the value of e2. Another way to view equality is that we
should be able to substitute e1 for e2, or vice versa, wherever they appear
in a program, without affecting the result of that program.

In general, however, it is not possible for a program to determine the
equality of two expressions—consider, for example, determining the equal-
ity of two infinite lists, two infinite Music values, or two functions of type
Integer → Integer .1 The ability to compute the equality of two values is
called computational equality. Even though by the above simple examples it
is clear that computational equality is strictly weaker than full equality, it
is still an operation that we would like to use in many ordinary programs.

Haskell’s operator for computational equality is (==). Partly because of
the problem mentioned above, there are many types for which we would like
equality defined, but some for which it might not make sense. For example,
it is common to compare two characters, two integers, two floating-point
numbers, etc. On the other hand, comparing the equality of infinite data
structures, or functions, is difficult, and in general not possible. Thus Haskell
has a type class called Eq , so that the equality operator (==) can be given
the qualified type:

(==) :: Eq a ⇒ a → a → Bool

In other words, (==) is a function that, for any type a in the class Eq ,
tests two values of type a for equality, returning a Boolean (Bool ) value as
a result. Amongst Eq’s instances are the types Char and Integer, so that
the following calculations hold:

42 == 42 ⇒ True
42 == 43 ⇒ False
’a’ == ’a’⇒ True
’a’ == ’b’⇒ False

Furthermore, the expression 42 == ’a’ is ill-typed; Haskell is clever enough

1This is the same as determining program equivalence, a well-known example of an
undecideable problem in the theory of computation.
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to know when qualified types are ill-formed.

One of the nice things about qualified types is that they work in the
presence of ordinary polymorphism. In particular, the type constraints can
be made to propagate through polymorphic data types. For example, be-
cause Integer and Float are members of Eq , so are the types (Integer ,Char ),
[Integer ], [Float ], etc. Thus:

[42, 43] == [42, 43] ⇒ True
[4.2, 4.3] == [4.3, 4.2] ⇒ False
(42, ’a’) == (42, ’a’)⇒ True

This will be elaborated upon in a later section.

Type constraints also propagate through function definitions. For exam-
ple, consider this definition of the function ∈ that tests for membership in
a list:

x ∈ [ ] = False
x ∈ (y : ys) = x == y ∨ x ∈ ys

Details: (∈) is actually written elem in Haskell; i.e. it is a normal function, not

an infix operator. Of course it can be used in an infix manner (and it often is) by

enclosing it in backquotes.

Note the use of (==) on the right-hand side of the second equation. The
principal type for (∈) is thus:

∈ ::Eq a ⇒ a → [a ]→ Bool

This should be read, “For every type a that is an instance of the class Eq ,
(∈) has type a → [a ]→ Bool .” This is exactly what we would hope for—it
expresses the fact that (∈) is not defined on all types, just those for which
computational equality is defined.

The above type for (∈) is also its principal type, and Haskell will infer
this type if no signature is given. Indeed, if we were to write the type
signature:

(∈) :: a → [a ]→ Bool

a type error would result, because this type is fundamentally too general,
and the Haskell type system will complain.
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Details: On the other hand, we could write:

(∈) :: Integer → [Integer ]→ Bool

if we expect to use (∈) only on lists of integers. In other words, using a type

signature to constrain a value to be less general than its principal type is Ok.

As another example of this idea, a function that squares its argument:

square x = x ∗ x
has principal type Num a ⇒ a → a, since (∗), like (+), has type
Num a ⇒ a → a → a. Thus:

square 42 ⇒ 1764
square 4.2⇒ 17.64

The Num class will be discusssed in greater detail shortly.

7.3 Defining Our Own Type Classes

Haskell provides a mechanism whereby we can create our own qualified types,
by defining a new type class and specifying which types are members, or
“instances” of it. Indeed, the type classes Num and Eq are not built-in
as primitives in Haskell, but rather are simply predefined in the Standard
Prelude.

To see how this is done, consider the Eq class. It is created by the
following type class declaration:

class Eq a where
(==) :: a → a → Bool

The connection between (==) and Eq is important: the above declaration
should be read, “a type a is an instance of the class Eq only if there is an
operation (==) :: a → a → Bool defined on it.” (==) is called an operation
in the class Eq , and in general more than one operation is allowed in a class.
More examples of this will be introduced shortly.

So far so good. But how do we specify which types are instances of the
class Eq, and the actual behavior of (==) on each of those types? This is
done with an instance declaration. For example:

instance Eq Integer where
x == y = integerEq x y
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The definition of (==) is called a method. The function integerEq hap-
pens to be the primitive function that compares integers for equality, but
in general any valid expression is allowed on the right-hand side, just as for
any other function definition. The overall instance declaration is essentially
saying: “The type Integer is an instance of the class Eq , and here is the
method corresponding to the operation (==).” Given this declaration, we
can now compare fixed-precision integers for equality using (==). Similarly:

instance Eq Float where
x == y = floatEq x y

allows us to compare floating-point numbers using (==).

More importantly, datatypes that we have defined on our own can also
be made instances of the class Eq . Consider, for example, the PitchClass
data type defined in Chapter 2:

data PitchClass = Cff | Cf | C | Dff | Cs | Df | Css | D | Eff | Ds
| Ef | Fff | Dss | E | Ff | Es | F | Gff | Ess | Fs
| Gf | Fss | G | Aff | Gs | Af | Gss | A | Bff | As
| Bf | Ass | B | Bs | Bss

We can declare PitchClass to be an instance of Eq as follows:

instance Eq PitchClass where
Cff == Cff = True
Cf == Cf = True
C == C = True
...
Bs == Bs = True
Bss == Bss = True

== = False

where ... refers to the other thirty equations needed to make this definition
complete. Indeed, this is rather tedious! It is not only tedious, it is also
dead obvious how (==) should be defined.

7.3.1 Derived Instances

To alleviate the burden of defining instances such as above, Haskell provides
a convenient way to automatically derive such instance declarations from
data type declarations, for certain predefined type classes. This is done
using a deriving clause. For example, in the case of PitchClass we can
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simply write:

data PitchClass = Cff | Cf | C | Dff | Cs | Df | Css | D | Eff | Ds
| Ef | Fff | Dss | E | Ff | Es | F | Gff | Ess | Fs
| Gf | Fss | G | Aff | Gs | Af | Gss | A | Bff | As
| Bf | Ass | B | Bs | Bss

deriving Eq

With this declaration, Haskell will automatically derive the instance dec-
laration given above, so that (==) behaves in the way we would expect it
to.

Consider now a polymorphic type, such as the Primitive type from Chap-
ter 2:

data Primitive a = Note Dur a
| Rest Dur

What should an instance for this type in the class Eq look like? Here is a
first attempt:

instance Eq (Primitive a) where
Note d1 x1 == Note d2 x2 = (d1 == d2) ∧ (x1 == x2)
Rest d1 == Rest d2 = d1 == d2

== = False

Note the use of (==) on the right-hand side, in several places. Two of those
places involve Dur , which a type synonym for Rational . The Rational type
is in fact a predefined instance of Eq , so all is well there. (If it were not an
instance of Eq, a type error would result.)

But what about the term x1 == x2? x1 and x2 are values of the poly-
morphic type a, but how do we know that equality is defined on a, i.e. that
the type a is an instance of Eq? In fact this is not known in general. The
simple fix is to add a constraint to the instance declaration, as follows:

instance Eq a ⇒ Eq (Primitive a) where
Note d1 x1 == Note d2 x2 = (d1 == d2) ∧ (x1 == x2)
Rest d1 == Rest d2 = d1 == d2

== = False

This can be read, “For any type a in the class Eq , the type Primitive a
is also in the class Eq, and here is the definition of (==) for that type.”
Indeed, if we had written the original type declaration like this:

data Primitive a = Note Dur a
| Rest Dur

deriving Eq
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then Haskell would have derived the above correct instance declaration au-
tomatically.

So, for example, (==) is defined on the type Primitive Pitch, because
Pitch is a type synonym for (PitchClass ,Octave), and (a) PitchClass is an
instance of Eq by the effort above, (b) Octave is a synonym for Int , which is
a predefined instance of Eq , and (c) as mentioned earlier the pair type is a
predefined instance of Eq . Indeed, now that an instance for a polymorphic
type has been seen, we can understand what the predefined instance for
polymorphic pairs must look like, namely:

instance (Eq a,Eq b)⇒ Eq (a, b) where
(x1, y1) == (x2, y2) = (x1 == x2) ∧ (y1 == y2)

About the only thing not considered is a recursive data type. For exam-
ple, recall the Music data type, also from Chapter 2:

data Music a = Prim (Primitive a)
| Music a :+:Music a
| Music a :=:Music a
| Modify Control (Music a)

Its instance declaration for Eq seems obvious:

instance Eq a ⇒ Eq (Music a) where
Prim p1 == Prim p2 = p1 == p2
(m1 :+:m2) == (m3 :+:m4) = (m1 == m3) ∧ (m2 == m4)
(m1 :=:m2) == (m3 :=:m4) = (m1 == m3) ∧ (m2 == m4)
Modify c1 m1 == Modify c2 m2 = (c1 == c2) ∧ (m1 == m2)

Indeed, assuming that Control is an instance of Eq, this is just what is
expected, and can be automatically derived by adding a deriving clause to
the data type declaration for Music.

7.3.2 Default Methods

In reality, the class Eq as defined in Haskell’s Standard Prelude is slightly
richer than what is defined above. Here it is in its exact form:

class Eq a where
(==), (6=) :: a → a → Bool
x 6= y = ¬ (x == y)
x == y = ¬ (x 6= y)
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This is an example of a class with two operations, one for equality, the
other for inequality. It also demonstrates the use of a default method, one
for each operator. If a method for a particular operation is omitted in an
instance declaration, then the default one defined in the class declaration,
if it exists, is used instead. For example, all of the instances of Eq defined
earlier will work perfectly well with the above class declaration, yielding just
the right definition of inequality that we would expect: the logical negation
of equality.

Details: Both the inequality and the logical negation operators are shown here

using the mathematical notation, 6= and ¬, respectively. When writing your Haskell

programs, you instead will have to use the operator /= and the function name not,

respectively.

A useful slogan that helps to distinguish type classes from ordinary poly-
morphism is this: “polymorphism captures similar structure over different
values, while type classes capture similar operations over different struc-
tures.” For example, a sequences of integers, sequence of characters, etc.
can be captured as a polymorphic List , whereas equality of integers, equal-
ity of trees, etc. can be captured by a type class such as Eq.

7.3.3 Inheritance

Haskell also supports a notion called inheritance. For example, we may
wish to define a class Ord that “inherits” all of the operations in Eq , but
in addition has a set of comparison operations and minimum and maximum
functions (a fuller definition of Ord , as taken from the Standard Prelude, is
given in Appendix B):

class Eq a ⇒ Ord a where
(<), (6), (>), (>) :: a → a → Bool
max ,min :: a → a → a

Note the constraint Eq a ⇒ in the class declaration. Eq is a superclass
of Ord (conversely, Ord is a subclass of Eq), and any type that is an instance
of Ord must also be an instance of Eq . The reason that this extra constraint
makes sense is that to perform comparisons such as a 6 b and a > b implies
that we know how to compute a == b.
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For example, following the strategy used for Eq, we could declare Music
an instance of Ord as follows (note the constraint Ord a ⇒ ...):

instance Ord a ⇒ Ord (Music a) where
Prim p1 < Prim p2 = p1 < p2
(m1 :+:m2) < (m3 :+:m4) = (m1 <m3) ∧ (m2 <m4)
(m1 :=:m2) < (m3 :=:m4) = (m1 <m3) ∧ (m2 <m4)
Modify c1 m1 <Modify c2 m2 = (c1 < c2) ∧ (m1 <m2)
...

Although this is a perfectly well-defined definition for <, it is not clear that
it exhibits the desired behavior, an issue that will be returned to in Section
7.7.

Another benefit of inheritance is shorter constraints. For example, the
type of a function that uses operations from both the Eq and Ord classes
can use just the constraint (Ord a) rather than (Eq a,Ord a), since Ord
“implies” Eq.

As an example of the use of Ord , a generic sort function should be able
to sort lists of any type that is an instance of Ord , and thus its most general
type should be:

sort ::Ord a ⇒ [a ]→ [a ]

This typing for sort would naturally arise through the use of comparison
operators such as < and > in its definition.

Details: Haskell also permits multiple inheritance, since classes may have more
than one superclass. Name conflicts are avoided by the constraint that a particular
operation can be a member of at most one class in any given scope. For example,
the declaration

class (Eq a, Show a)⇒ C a where ...

creates a class C that inherits operations from both Eq and Show .

Finally, class methods may have additional class constraints on any type variable
except the one defining the current class. For example, in this class:

class C a where
m :: Eq b ⇒ a → b

the method m requires that type b is in class Eq . However, additional class

constraints on type a are not allowed in the method m; these would instead have

to be part of the overall constraint in the class declaration.
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Type Key Key
Class functions instances

Num (+), (−), (∗) :: Num a ⇒ a → a → a Integer , Int ,Float ,Double,
negate ::Num a ⇒ a → a Rational
minimal set: all but (−) or negate

Eq (==), (6=) :: Eq a ⇒ a → a → Bool Integer , Int ,Float ,Double,
Rational ,Char ,Bool , ...

minimal set: either (==) or (6=)

Ord (>), (<), (>), (6):: Integer , Int ,Float ,Double,
Ord a ⇒ a → a → Bool Rational ,Char ,Bool , ...

max ,min ::Ord a ⇒ a → a → a
minimal set: (6)

Enum succ, pred :: Enum a ⇒ a → a Integer , Int ,Float ,Double,
fromEnum :: Enum a ⇒ a → Int Rational ,Char ,Bool , ...
toEnum :: Enum a ⇒ Int → a
also enables arithmetic sequences
minimal set: toEnum & fromEnum

Bounded minBound ,maxBound :: a Int ,Char ,Bool

Show show :: Show a ⇒ a → String Almost every type except
for functions

Read read ::Read a ⇒ String → a Almost every type except
for functions

Figure 7.1: Common Type Classes and Their Instances

7.4 Haskell’s Standard Type Classes

The Standard Prelude defines many useful type classes, including Eq and
Ord . They are described in detail in Appendix B. In addition, the Haskell
Report and the Library Report contain useful examples and discussions of
type classes; you are encouraged to read through them.

Most of the standard type classes in Haskell are shown in Figure 7.1,
along with their key instances. Since each of these has various default mth-
ods defined, also shown is the minimal set of methods that must defined—the
rest are taken care of by the default methods. For example, for Ord , all we
have to provide is a definition for (6).

The Num class, which has been used implicitly throughout much of the
text, is described in more detail below. With this explanation a few more
of Haskell’s secrets will be revealed.
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7.4.1 The Num Class

As we already know, Haskell provides several kinds of numbers, some of
which have already been introduced: Int , Integer , Rational , and Float .
These numbers are instances of various type classes arranged in a rather
complicated hierarchy. The reason for this is that there are many operations,
such as (+), abs , and sin , that are common amongst some of these number
types. For example, we would expect (+) to be defined on every kind of
number, whereas sin might only be applicable to either single precision
(Float ) or double-precision (Double) floating-point numbers.

Control over which numerical operations are allowed and which are not is
the purpose of the numeric type class hierarchy. At the top of the hierarchy,
and therefore containing operations that are valid for all numbers, is the
class Num. It is defined as:

class (Eq a,Show a)⇒ Num a where
(+), (−), (∗) :: a → a → a
negate :: a → a
abs, signum :: a → a
fromInteger :: Integer → a

Note that (/) is not an operation in this class. negate is the negation function;
abs is the absolute value function; and signum is the sign function, which
returns −1 if its argument is negative, 0 if it is 0, and 1 if it is positive.
fromInteger converts an Integer into a value of type Num a ⇒ a, which is
useful for certain coercion tasks.
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Details: Haskell also has a negation operator, which is Haskell’s only prefix
operator. However, it is just shorthand for negate. That is, −e in Haskell is
shorthand for negate e.

The operation fromInteger also has a special purpose. How is it that we can
write the constant 42, say, both in a context requiring an Int and in one requiring
a Float (say). Somehow Haskell “knows” which version of 42 is required in a
given context. But, what is the type of 42 itself? The answer is that it has type
Num a ⇒ a, for some a to be determined by its context. (If this seems strange,
remember that [ ] by itself is also somewhat ambiguous; it is a list, but a list of
what? The most we can say about its type is that it is [a ] for some a yet to be
determined.)

The way this is achieved in Haskell is that literal numbers such as 42 are actu-

ally considered to be shorthand for fromInteger 42. Since fromInteger has type

Num a ⇒ Integer → a, then fromInteger 42 has type Num a ⇒ a.

The complete hierarchy of numeric classes is shown in Figure 7.2; note
that some of the classes are subclasses of certain non-numeric classes, such as
Eq and Show . The comments below each class name refer to the Standard
Prelude types that are instances of that class. See Appendix B for more
detail.

The Standard Prelude actually defines only the most basic numeric types:
Int , Integer , Float and Double. Other numeric types such as rational num-
bers (Ratio a) and complex numbers (Complex a) are defined in libraries.
The connection between these types and the numeric classes is given in Fig-
ure 7.3. The instance declarations implied by this table can be found in the
Haskell Report.

7.4.2 The Show Class

It is very common to want to convert a data type value into a string. In
fact, it happens all the time when we interact with GHCi at the command
prompt, and GHCi will complain if it does not “know” how to “show” a
value. The type of anything that GHCi prints must be an instance of the
Show class.
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Figure 7.2: Numeric Class Hierarchy
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Numeric Type Type Class Description

Int Integral Fixed-precision integers
Integer Integral Arbitrary-precision integers
Integral a ⇒

Ratio a RealFrac Rational numbers
Float RealFloat Real floating-point, single precision
Double RealFloat Real floating-point, double precision
RealFloat a ⇒

Complex a Floating Complex floating-point

Figure 7.3: Standard Numeric Types

Not all of the operations in the Show class will be discussed here, in fact
the only one of interest is show :

class Show a where
show :: a → String
...

Instances of Show can be derived, so normally we do not have to worry
about the details of the definition of show .

Lists also have a Show instance, but it is not derived, since, after all, lists
have special syntax. Also, when show is applied to a string such as "Hello",
it should generate a string that, when printed, will look like "Hello". This
means that it must include characters for the quotation marks themselves,
which in Haskell is achieved by prefixing the quotation mark with the “es-
cape” character \. Given the following data declaration:

data Hello = Hello
deriving Show

it is then instructive to ponder over the following calculations:

show Hello =⇒ "Hello"

show (show Hello) =⇒ show "Hello" =⇒ "\"Hello\""

show (show (show Hello)) =⇒ "\"\\\"Hello\\\"\""

Details: To refer to the escape character itself, it must also be escaped; thus

"\\" prints as \.
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For further pondering, consider the following program. See if you can
figure out what it does, and why!2

main = putStr (quine q)
quine s = s ++ show s
q = "main = putStr (quine q)\nquine s = s ++ show s\nq = "

Details: The "\n" that appears twice in the string q is a “newline” character;

that is, when q is printed (or displayed on a console) the string starting to the

right of "\n" will appear on a new line.

Derived Show instances are possible for all types whose component types
also have Show instances. Show instances for most of the standard types
are provided in the Standard Prelude.

7.4.3 The Functor Class

[Define Functor class, and show instances for lists, Maybe, Primitive, Music,
...]

TBD

7.5 Other Derived Instances

In addition to Eq and Ord , instances of Enum, Bounded, Ix, Read, and Show
(see Appendix B) can also be generated by the deriving clause. These
type classes are widely used in Haskell programming, making the deriving
mechanism very useful.

The textual representation defined by a derived Show instance is consis-
tent with the appearance of constant Haskell expressions (i.e. values) of the
type involved. For example, from:

data Color = Black
| Blue
| Green

2The essence of this idea is due to Willard Van Orman Quine [Qui66], and its use in a
computer program is discussed by Hofstadter [Hof79]. It was adapted to Haskell by Jón
Fairbairn.
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| Cyan
| Red
| Magenta
| Yellow
|White
deriving (Show ,Eq ,Ord ,Enum,Bounded )

we can expect that:

show [Red . . ]
=⇒ "[Black,Blue,Green,Cyan,Red,Magenta,Yellow,White]"

We can also expect that:

minBound :: Color =⇒ Black
maxBound :: Color =⇒White

Note that the type signature “::Color” is given explicitly in this case, be-
cause, out of any context, at least, Haskell does not know the type for which
you are trying to determine the minimum and maximum bounds.

Further details about derived instances can be found in the Haskell Re-
port.

Many of the predefined data types in Haskell have deriving clauses,
even ones with special syntax. For example, if we could write a data type
declaration for lists (the reason we cannot do this is that lists have special
syntax, both at the value and type level) it would look something like this:

data [a ] = [ ]
| a : [a ]

deriving (Eq ,Ord)

The derived Eq and Ord instances for lists are the usual ones; in particular,
character strings, as lists of characters, are ordered as determined by the
underlying Char type, with an initial sub-string being less than a longer
string; for example, "cat"< "catalog" is True.

In practice, Eq and Ord instances are almost always derived, rather than
user-defined. In fact, you should provide your own definitions of equality and
ordering predicates only with some trepidation, being careful to maintain
the expected algebraic properties of equivalence relations and total orders,
respectively (more on this later). An intransitive (==) predicate, for ex-
ample, would be problematic, confusing readers of the program who expect
(==) to be transitive. Nevertheless, it is sometimes necessary to provide Eq
or Ord instances different from those that would be derived.
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The data type declarations for PitchClass , Primitive, Music and Control
given in Chapter 1 are not the ones actually used in Eutperpea. The actual
definitions each use a deriving clause, and are shown in Figure 7.4. The
InstrumentName data type from Chapter 1 also has a deriving clause for
Show , Eq , and Ord (but is ommitted here to save space).

Details: When instances of more than one type class are derived for the same

data type, they appear grouped in parentheses as in Figure 7.4. Also, in this case

Eq must appear if Ord does (unless an explicit instance for Eq is given), since Eq

is a superclass of Ord .

Note that with single and double sharps and flats, there are many enhar-
monic equivalences. Thus in the data declaration for PitchClass , the con-
structors are ordered such that, if pc1<pc2, then pcToInt pc1 6 pcToInt pc2.

For some examples, the Show class allows us to convert values to strings:

show Cs =⇒ "Cs"

show concertA =⇒ "(A,4)"

The Read class allows us to go the other way around:

read "Cs" =⇒ Cs
read "(A,4)" =⇒ (A, 4)

The Eq class allows testing values for equality:

concertA == a440 =⇒ True
concertA == (A, 5) =⇒ False

And the Ord class has relational operators for types whose values can be
ordered:

C <G =⇒ True
max C G =⇒ G

The Enum class is for “enummerable types.” For example:

succ C =⇒ Dff
pred 1 =⇒ 0
fromEnum C =⇒ 2
toEnum 3 =⇒ Dff

The Enum class is also the basis on which arithmetic sequences (defined
earlier in Section 5.3.1) are defined.
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data PitchClass = Cff | Cf | C | Dff | Cs | Df | Css | D | Eff | Ds
| Ef | Fff | Dss | E | Ff | Es | F | Gff | Ess | Fs
| Gf | Fss | G | Aff | Gs | Af | Gss | A | Bff | As
| Bf | Ass | B | Bs | Bss

deriving (Eq ,Ord , Show ,Read ,Enum,Bounded)

data Primitive a = Note Dur a
| Rest Dur

deriving (Show ,Eq ,Ord)

data Music a =
Prim (Primitive a) -- primitive value
| Music a :+:Music a -- sequential composition
| Music a :=:Music a -- parallel composition
| Modify Control (Music a) -- modifier
deriving (Show ,Eq ,Ord)

data Control =
Tempo Rational -- scale the tempo
| Transpose AbsPitch -- transposition
| Instrument InstrumentName -- instrument label
| Phrase [PhraseAttribute ] -- phrase attributes
| Player PlayerName -- player label
deriving (Show ,Eq ,Ord)

Figure 7.4: Euterpea’s Data Types with Deriving Clauses
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7.6 The type of play

Ever since the play function was introduced in Chapter 2, we have been using
it to “play” the results of our Music values, i.e. to listen to their rendering
through MIDI. However, it is just a function like any other function in
Haskell, but we never discussed what its type is. In fact, here it is:

play :: Performable a ⇒ Music a → IO ()

The type of the result, IO (), is the type of a command in Haskell, i.e.
something that “does I/O.” We will have more to say about this in a later
chapter.

But of more relevance to this chapter, note the constraint Performable a.
You might guess that Performable is a type class, indeed it is the type
class of “performable values.” If a type is a member of (i.e. instance of)
Performable , then it can be “performed,” i.e. rendered as sound. The point
is, some things we would not expect to be performable, for example a list
or a character or a function. So the type signature for play can be read,
“For any type T that is a member of the class Performable , play has type
Music T → IO ().”

Currently the types Pitch, (Pitch,Volume), and (Pitch, [NoteAttribute ])
are members of the class Performable . (The NoteAttribute data type will
be introduced in Chapter 8.) Indeed, we have used play on the first two of
these types, i.e. on values of type Music Pitch and Music (Pitch,Volume) in
previous examples, and you might have wondered how both could possibly
be properly typed—hopefully now it is clear.

7.7 Reasoning With Type Classes

Type classes often imply a set of laws that govern the use of the operators
in the class. For example, for the Eq class, we can expect the following laws
to hold for every instance of the class:

x == x
x == y ⊇ y == x
(x == y) ∧ (y == z ) ⊇ x == z
(x 6= y) ⊇ ¬ (x == y)

where ⊇ should be read “implies that.”3

3Mathematically, the first three of these laws are the same as those for an equivalence

relation.
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However, there is no way to guarantee these laws. A user may create
an instance of Eq that violates them, and in general Haskell has no way
to enforce them. Nevertheless, it is useful to state the laws of interest for
a particular class, and to state the expectation that all instances of the
class be “law-abiding.” Then as diligent functional programmers, we should
ensure that every instance that is defined, whether for our own type class
or someone else’s, is in fact law-abiding.

As another example, consider theOrd class, whose instances are intended
to be totally ordered, which means that the following laws should hold, for
all a, b, and c:

a 6 a
(a 6 b) ∧ (b 6 c) ⊇ (a 6 c)
(a 6 b) ∧ (b 6 a) ⊇ (a == b)
(a 6= b) ⊇ (a < b) ∨ (b < a)

Similar laws should hold for (>).

But alas, the instance of Music in the class Ord given in Section 7.3.3
does not satisfy all of these laws! To see why, consider two Primitive values
p1 and p2 such that p1 < p2. Now consider these two Music values:

m1 = Prim p1 :+: Prim p2
m2 = Prim p2 :+: Prim p1

Clearly m1 == m2 is false, but the problem is, so are m1<m2 and m2<m1,
thus violating the last law above.

To fix the problem, a lexicographic ordering should be used on the Music
type, such as used in a dictionary. For example, “polygon” comes before
“polymorphic,” using a left-to-right comparison of the letters. The new
instance declaration looks like this:

instance Ord a ⇒ Ord (Music a) where
Prim p1 < Prim p2 = p1 < p2
Prim p1 < = True
(m1 :+:m2) < Prim = False
(m1 :+:m2) < (m3 :+:m4) = (m1 <m3) ∨

(m1 == m3) ∧ (m2 <m4)
(m1 :+:m2) < = True
(m1 :=:m2) < Prim = False
(m1 :=:m2) < (m3 :+:m4) = False
(m1 :=:m2) < (m3 :=:m4) = (m1 <m3) ∨

(m1 == m3) ∧ (m2 <m4)
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(m1 :=:m2) < = True
Modify c1 m1 <Modify c2 m2 = (c1 < c2) ∨

(c1 == c2) ∧ (m1 <m2)
Modify c1 m1 < = False

This example shows the value of checking to be sure that each instance
obeys the laws of its class. Of course, that check should come in the way of
a proof. This example also highlights the utility of derived instances, since
the derived instance of Music for the class Ord is equivalent to that above,
yet is done automatically.

Exercise 7.1 Prove that the instance of Music in the class Eq satisfies the
laws of its class. Also prove that the modified instance of Music in the class
Ord satisfies the laws of its class.

Exercise 7.2 Write out appropriate instance declarations for the Color
type in the classes Eq, Ord , and Enum. (For simplicity you may define
Color to have fewer constructors, say just Red , Green and Blue.)

Exercise 7.3 Define a type class called Temporal whose members are types
that can be interpreted as having a temporal duration. Temporal should
have three operations, namely:

durT :: Temporal a ⇒ a → Dur
takeT :: Temporal a ⇒ Dur → a → a
dropT :: Temporal a ⇒ Dur → a → a

Then define instances of Temporal for the types Music and Primitive. (Hint:
this is not as hard as it sounds, because you can reuse some function names
previously defined to do these sorts of operations.)

Can you think of other types that are temporal?

Exercise 7.4 Functions are not members of the Eq class, because, in gen-
eral, determining whether two functions are equal is undecideable. But
functions whose domains are finite, and can be completely enumerated, can
be tested for equality. We just need to test that each function, when applied
to each element in the domain, returns the same result.

Define an instance of Eq for functions. For this to be possible, note that,
if the function type is a → b, then:

• the type a must be enumerable (i.e. a member of the Enum class),
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• the type a must be bounded (i.e. a member of Bounded class), and

• the type b must admit equality (i.e. be a member of the Eq class).

These constraints must therefore be part of the instance declaration.

Hint: using the minimum and maximum bounds of a type, enumerate
all the elements of that type using an arithmetic sequence (recall Section
5.3.1), which, despite its name, works for any enumerable type.

Test your implementation by defining some functions on existing Eu-
terpea types that are finite and bounded (such as PitchClass and Color ), or
by defining some functions on your own data type(s).



Chapter 8

Interpretation and
Performance

{-# LANGUAGE FlexibleInstances, TypeSynonymInstances #-}
module Euterpea.Music.Note.Performance where

import Euterpea.Music.Note.Music
import Euterpea.Music.Note.MoreMusic

Details: The first line above is a GHC pragma that, in this case, relaxes certain

constraints on instance declarations. Specifically, instances cannot normally be

declared for type synonyms—but the above pragma overrides that constraint.

So far, our presentation of musical values in Haskell has been mostly
structural, i.e. syntactic. Although we have given an interpretation of the
duration of Music values (as manifested in dur , takeM , dropM , and so on),
we have not given any deeper musical interpretation. What do these musical
values actually mean, i.e. what is their semantics, or interpretation? The
formal process of giving a semantic interpretation to syntactic constructs
is very common in computer science, especially in programming language
theory. But it is obviously also common in music: the interpretation of
music is the very essence of musical performance. However, in conventional
music this process is usually informal, appealing to aesthetic judgments and
values. What we would like to do is make the process formal in Euterpea—
but still flexible, so that more than one interpretation is possible, just as in

134
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the human performance of music.

8.1 Abstract Performance

To begin, we need to say exactly what an abstract performance is. Our
approach is to consider a performance to be a time-ordered sequence of
musical events, where each event captures the playing of one individual
note. In Haskell:

type Performance = [Event ]

data Event = Event {eTime :: PTime,
eInst :: InstrumentName ,
ePitch :: AbsPitch,
eDur :: DurT ,
eVol :: Volume,
eParams :: [Double ]}

deriving (Show ,Eq ,Ord)

type PTime = Rational
type DurT = Rational
type Volume = Integer

Details: The data declaration for Event uses Haskell’s field label syntax, also
called record syntax, and is equivalent to:

data Event = Event PTime InstrumentName
AbsPitch DurT Volume [Double ]

deriving (Show ,Eq ,Ord)

except that the former also defines “field labels” eTime, eInst , ePitch, eDur ,

eVol , and eParams , which can be used to create, update, and select from Event

values.
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Details: For example, this equation:

e = Event 0 Cello 27 (1/4) 50 [ ]

is equivalent to:

e = Event {eTime = 0, ePitch = 27, eDur = 1/4,
eInst = Cello, eVol = 50, eParams = [ ]}

Although more verbose, the latter is also more descriptive, and the order of the
fields does not matter (indeed the order here is not the same as above).

Field labels can be used to select fields from an Event value; for example, using
the value of e above, eInst e ⇒ Cello, eDur e ⇒ 1/4, and so on. They can also
be used to selectively update fields of an existing Event value. For example:

e {eInst = Flute} ⇒ Event 0 Flute 27 (1/4) 50 [ ]

Finally, they can be used selectively in pattern matching:

f (Event {eDur = d , ePitch = p}) = ...d ... p ...

Field labels do not change the basic nature of a data type; they are simply a

convenient syntax for referring to the components of a data type by name rather

than by position.

An event Event {eTime = s, eInst = i , ePitch = p, eDur = d , eVol =
v } captures the fact that at start time s, instrument i sounds pitch p with
volume v for a duration d (where now duration is measured in seconds,
rather than beats). (The eParams of an event is for instruments other
than MIDI, in particular instruments that we might design on our using the
techniques described in Chapter 19.

An abstract performance is the lowest of our music representations not
yet committed to MIDI or some other low-level computer music representa-
tion. In Chapter 14 we will discuss how to map a performance into MIDI.

8.1.1 Context

To generate a complete performance of, i.e. give an interpretation to, a
musical value, we must know the time to begin the performance, and the
proper instrument, volume, starting pitch offset, and tempo. We can think
of this as the “context” in which a musical value is interpreted. This context
can be captured formally in Haskell as a data type:
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data Context a = Context {cTime :: PTime,
cPlayer :: Player a,
cInst :: InstrumentName ,
cDur :: DurT ,
cPch :: AbsPitch,
cVol :: Volume,
cKey :: (PitchClass ,Mode)}

deriving Show

When a Music value is interpreted, it will be given an inital context, but
as the Music value is recursively interpreted, the context will be updated
to reflect things like tempo change, transposition, and so on. This will be
made clear shortly.

The DurT component of the context is the duration, in seconds, of one
whole note. To make it easier to compute, we can define a “metronome”
function that, given a standard metronome marking (in beats per minute)
and the note type associated with one beat (quarter note, eighth note, etc.)
generates the duration of one whole note:

metro :: Int → Dur → DurT
metro setting dur = 60/(fromIntegral setting ∗ dur)

Thus, for example, metro 96 qn creates a tempo of 96 quarter notes per
minute.

Details: fromIntegral :: (Integral a,Num b) ⇒ a → b coerces a value whose

type is a member of the Integral class to a value whose type is a member of the

Num class. As used here, it is effectively converting the Int value setting to a

Rational value, because dur is a Rational value, Rational is a member of the

Num class, and multiplication has type (∗) :: Num a ⇒ a → a → a.

8.1.2 Player Map

In addition to the context, we also need to know what player to use; that
is, we need a mapping from each PlayerName (a string) in a Music value
to the actual player to be used.1 The details of what a player is, and how
it gives great flexibility to Euterpea, will be explained later in this chapter

1We do not need a mapping from InstrumentNames to instruments, since that is han-
dled in the translation from a performance into MIDI, which is discussed in Chapter 14.
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perform :: PMap a → Context a → Music a → Performance
perform pm
c@Context {cTime = t , cPlayer = pl , cDur = dt , cPch = k } m =
case m of
Prim (Note d p) → playNote pl c d p
Prim (Rest d) → [ ]
m1 :+:m2 →
let c′ = c {cTime = t + dur m1 ∗ dt }
in perform pm c m1 ++ perform pm c′ m2

m1 :=:m2 → merge (perform pm c m1)
(perform pm c m2)

Modify (Tempo r) m → perform pm (c {cDur = dt/r }) m
Modify (Transpose p) m → perform pm (c {cPch = k + p}) m
Modify (Instrument i) m → perform pm (c {cInst = i }) m
Modify (KeySig pc mo) m → perform pm (c {cKey = (pc,mo)}) m
Modify (Player pn) m → perform pm (c {cPlayer = pm pn }) m
Modify (Phrase pa) m → interpPhrase pl pm c pa m

Figure 8.1: An abstract perform function

(Section 8.2). For now, we simply define a type synonym to capture the
mapping of PlayerName to Player :

type PMap a = PlayerName → Player a

8.1.3 Interpretation

Finally, we are ready to give an interpretation to a piece of music, which we
do by defining a function perform , whose type is:

perform :: PMap a → Context a → Music a → Performance

So perform pm c m is the Performance that results from interpreting m
using player map pm in the initial context c. Conceptually, perform is
perhaps the most important function defined in this textbook, and is shown
in Figure 8.1. To help in understanding the definition of perform , let’s step
through the equations one at a time.

1. The interpretation of a note is player dependent. This is handled in
perform using the playNote function, which takes the player as an
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argument. Precisely how the playNote function works is described in
Section 8.2, but for now you can think of it as returning a Performance
(a list of events) with just one event: the note being played.

2. In the interpretation of (:+:), note that the Performances of the two
arguments are appended together, with the start time of the second
Performance delayed by the duration of the first (as captured in the
context c′). The function dur (defined in Section 6.5) is used to com-
pute this duration. Note that the interpretation of (:+:) is well-defined
even for infinite Music values.

3. In the interpretation of (:=:), the Performances derived from the two
arguments are merged into a time-ordered stream. The definition of
merge is given below:

merge :: Performance → Performance → Performance

merge [ ] es2 = es2
merge es1 [ ] = es1
merge a@(e1 : es1) b@(e2 : es2) =

if e1 < e2 then e1 :merge es1 b
else e2 :merge a es2

Note that merge is esssentially the same as the mergeLD function
defined in Section 6.9.1.

4. In the interpretation of Modify , first recall the definition of Control
from Chapter 2.2:

data Control =
Tempo Rational -- scale the tempo
| Transpose AbsPitch -- transposition
| Instrument InstrumentName -- instrument label
| Phrase [PhraseAttribute ] -- phrase attributes
| Player PlayerName -- player label
| KeySig PitchClass Mode -- key signature and mode
deriving (Show ,Eq ,Ord)

type PlayerName = String
data Mode = Major | Minor

deriving (Show ,Eq ,Ord)

Each of these six constructors is handled by a separate equation in the
definition of perform . Note how the context is updated in each case—
the Context , in general, is the running “state” of the performance, and
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gets updated in several different ways.

Also of note is the treatment of Phrase . Like the playing of a note, the
playing of a phrase is player dependent. This is captured through the
function interpPhrase , which takes the player as an argument. Like
playNote , this too, along with the PhraseAttribute data type, will be
described in full detail in Section 8.2.

Figure 8.2 is a block diagram showing how perform fits into the “big
picture” of Euterpea. Music values are most abstract, Performance values
are less abstract, and MIDI or audio streams are the least abstract. This
chapter focuses on converting a Music value into a Performance ; subsequent
chapters will focus on translating a Performance into either MIDI (still at
the “note” level, and fairly straightforward) or audio (at the “signal” level,
and more complex).

perform  

To Audio 

To MIDI 

Music a 
Performance 

PlayerMap Context 
Audio 

soundcard 

WAV file 

MIDI 

soundcard 

MIDI file 

Figure 8.2: Block Diagram of Performance Concepts
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8.1.4 Efficiency Concerns

The use of dur in the treatment of (:+:) can, in the worst case, result in a
quadratic time complexity for perform . (Why?) A more efficient solution
is to have perform compute the duration directly, returning it as part of its
result. This version of perform is shown in Figure 8.3.

Aside from efficiency, there is a more abstract reason for including du-
ration in the result of perform . Namely, the performance of a rest is not
just nothing—it is a period of “silence” equal in duration to that of the rest.
Indeed, John Cage’s famous composition 4’ 33”, in which the performer is
instructed to play nothing, would otherwise be meaningless.2

Also note that merge compares entire events rather than just start times.
This is to ensure that it is commutative, a desirable condition for some of
the proofs used later in the text. Here is a more efficient version of merge
that will work just as well in practice:

merge :: Performance → Performance → Performance
merge [ ] es2 = es2
merge es1 [ ] = es1
merge a@(e1 : es1) b@(e2 : es2) =

if eTime e1 < eTime e2 then e1 :merge es1 b
else e2 :merge a es2

8.2 Players

Recall from Section 2.2 that the Phrase constructor in the Control data type
takes a list of PhraseAttributes as an argument:

data Control = ...
| Phrase [PhraseAttribute ] -- phrase attributes
...

It is now time to unveil the definition of PhraseAttribute! Shown fully in
Figure 8.4, these attributes give us great flexibility in the interpretation pro-
cess, because they can be interpreted by different players in different ways.
For example, how should “legato” be interpreted in a performance? Or
“diminuendo?” Different human players interpret things in different ways,
of course, but even more fundamental is the fact that a pianist, for exam-

2In reality this piece is meant to capture extemporaneously the sound of the environ-
ment during that period of “silence.” [Cag86]
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perform :: PMap a → Context a → Music a → Performance
perform pm c m = fst (perf pm c m)

perf :: PMap a → Context a → Music a → (Performance ,DurT)
perf pm
c@Context {cTime = t , cPlayer = pl , cDur = dt , cPch = k } m =
case m of
Prim (Note d p) → (playNote pl c d p, d ∗ dt)
Prim (Rest d) → ([ ], d ∗ dt)
m1 :+:m2 →

let (pf
1
, d1) = perf pm c m1

(pf 2, d2) = perf pm (c {cTime = t + d1}) m2

in (pf 1 ++ pf 2, d1 + d2)
m1 :=:m2 →

let (pf 1, d1) = perf pm c m1

(pf
2
, d2) = perf pm c m2

in (merge pf 1 pf 2,max d1 d2)
Modify (Tempo r) m → perf pm (c {cDur = dt /r }) m
Modify (Transpose p) m → perf pm (c {cPch = k + p}) m
Modify (Instrument i) m → perf pm (c {cInst = i }) m
Modify (KeySig pc mo) m → perf pm (c {cKey = (pc,mo)}) m
Modify (Player pn) m → perf pm (c {cPlayer = pm pn }) m
Modify (Phrase pas) m → interpPhrase pl pm c pas m

Figure 8.3: A more efficient perform function
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ple, realizes legato in a way fundamentally different from the way a violinist
does, because of differences in their instruments. Similarly, diminuendo on
a piano and diminuendo on a harpsichord are very different concepts.

In addition to phrase attributes, Euterpea has a notion of note attributes
that can similarly be interpreted in different ways by different players. This
is done by exploiting polymorphism to define a version of Music that in
addition to pitch, carries a list of note attributes for each individual note:

data NoteAttribute =
Volume Int -- MIDI convention: 0=min, 127=max
| Fingering Integer
| Dynamics String
| Params [Double ]
deriving (Show ,Eq)

Our goal then is to define a player for music values of type:

type Note1 = (Pitch, [NoteAttribute ])
type Music1 = Music Note1

To facilitate the use of Music1 values, Euterpea defines the following simple
coercion functions:

toMusic1 ::Music Pitch → Music1
toMusic1 = mMap (λp → (p, [ ]))

toMusic1 ′ ::Music (Pitch,Volume)→ Music1
toMusic1 ′ = mMap (λ(p, v)→ (p, [Volume v ]))

Finally, with a slight stretch of the imagination, we can even consider the
generation of a score as a kind of player: exactly how the music is notated
on the written page may be a personal, stylized process. For example, how
many, and which staves should be used to notate a particular instrument?

To handle these three different kinds of interpretation, Euterpea has a
notion of a player that “knows” about differences with respect to perfor-
mance and notation. An Euterpean Player is a four-tuple consisting of a
name and three functions: one for interpreting notes, one for phrases, and
one for producing a properly notated score:
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data PhraseAttribute = Dyn Dynamic
| Tmp Tempo
| Art Articulation
| Orn Ornament

deriving (Show ,Eq ,Ord)

data Dynamic = Accent Rational | Crescendo Rational
| Diminuendo Rational | StdLoudness StdLoudness
| Loudness Rational

deriving (Show ,Eq ,Ord)

data StdLoudness = PPP | PP | P | MP | SF | MF | NF | FF | FFF
deriving (Show ,Eq ,Ord ,Enum)

data Tempo = Ritardando Rational | Accelerando Rational
deriving (Show ,Eq ,Ord)

data Articulation = Staccato Rational | Legato Rational
| Slurred Rational | Tenuto | Marcato | Pedal
| Fermata | FermataDown | Breath | DownBow
| UpBow | Harmonic | Pizzicato | LeftPizz
| BartokPizz | Swell |Wedge | Thumb | Stopped

deriving (Show ,Eq ,Ord)

data Ornament = Trill | Mordent | InvMordent | DoubleMordent
| Turn | TrilledTurn | ShortTrill
| Arpeggio | ArpeggioUp | ArpeggioDown
| Instruction String | Head NoteHead
| DiatonicTrans Int

deriving (Show ,Eq ,Ord)

data NoteHead = DiamondHead | SquareHead | XHead | TriangleHead
| TremoloHead | SlashHead | ArtHarmonic | NoHead

deriving (Show ,Eq ,Ord)

Figure 8.4: Phrase Attributes
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data Player a = MkPlayer {pName :: PlayerName ,
playNote ::NoteFun a,
interpPhrase :: PhraseFun a,
notatePlayer ::NotateFun a }

type NoteFun a = Context a → Dur → a → Performance
type PhraseFun a = PMap a → Context a → [PhraseAttribute ]

→ Music a → (Performance ,DurT )
type NotateFun a = ()

instance Show a ⇒ Show (Player a) where
show p = "Player "++ pName p

Note that NotateFun is just the unit type; this is because notation is cur-
rently not implemented in Euterpea. Also note the instance declaration for
a Player—since its components are mostly functions, which are not default
instances of Show , we define a simple way to return the PlayerName .

8.2.1 Example of Player Construction

In this section we define a “default player” called defPlayer (not to be con-
fused with a “deaf player”!) for use when none other is specified in a score;
it also functions as a basis from which other players can be derived.

At the upper-most level, defPlayer is defined as a four-tuple:

defPlayer :: Player Note1
defPlayer = MkPlayer

{pName = "Default",
playNote = defPlayNote defNasHandler ,
interpPhrase = defInterpPhrase defPasHandler ,
notatePlayer = ()}

The remaining functions are defined in Figure 8.5. Before reading this
code, first review how players are invoked by the perform function defined in
the last section; in particular, note the calls to playNote and interpPhrase .
We will define defPlayer to respond only to the Volume note attribute and
to the Accent , Staccato, and Legato phrase attributes.

Then note:

1. defPlayNote is the only function (even in the definition of perform)
that actually generates an event. It also modifies that event based on
an interpretation of each note attribute by the function defNasHandler .
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defPlayNote :: (Context (Pitch , [a ])→ a → Event → Event)
→ NoteFun (Pitch, [a ])

defPlayNote nasHandler
c@(Context cTime cPlayer cInst cDur cPch cVol cKey) d (p, nas) =
let initEv = Event {eTime = cTime , eInst = cInst ,

eDur = d ∗ cDur , eVol = cVol ,
ePitch = absPitch p + cPch,
eParams = [ ]}

in [foldr (nasHandler c) initEv nas ]

defNasHandler :: Context a → NoteAttribute → Event → Event
defNasHandler c (Volume v) ev = ev {eVol = v }
defNasHandler c (Params pms) ev = ev {eParams = pms }
defNasHandler ev = ev

defInterpPhrase ::
(PhraseAttribute → Performance → Performance)→
(PMap a → Context a → [PhraseAttribute ]→ -- PhraseFun
Music a → (Performance ,DurT ))

defInterpPhrase pasHandler pm context pas m =
let (pf , dur) = perf pm context m
in (foldr pasHandler pf pas , dur)

defPasHandler :: PhraseAttribute → Performance → Performance
defPasHandler (Dyn (Accent x )) =

map (λe → e {eVol = round (x ∗ fromIntegral (eVol e))})
defPasHandler (Art (Staccato x )) =

map (λe → e {eDur = x ∗ eDur e })
defPasHandler (Art (Legato x )) =

map (λe → e {eDur = x ∗ eDur e })
defPasHandler = id

Figure 8.5: Definition of default player defPlayer .
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2. defNasHandler only recognizes the Volume attribute, which it uses to
set the event volume accordingly.

3. defInterpPhrase calls (mutually recursively) perform to interpret a
phrase, and then modifies the result based on an interpretation of
each phrase attribute by the function defPasHandler .

4. defPasHandler only recognizes theAccent , Staccato, and Legato phrase
attributes. For each of these it uses the numeric argument as a “scal-
ing” factor of the volume (for Accent) and duration (for Staccato and
Legato). Thus Modify (Phrase [Legato (5/4)]) m effectively increases
the duration of each note in m by 25% (without changing the tempo).

8.2.2 Deriving New Players From Old Ones

It should be clear that much of the code in Figure 8.5 can be re-used in
defining a new player. For example, to define a player newPlayer that
interprets note attributes just like defPlayer but behaves differently with
respect to certain phrase attributes, we could write:

newPlayer :: Player (Pitch, [NoteAttribute ])
newPlayer = MkPlayer
{pName = "NewPlayer",
playNote = defPlayNote defNasHandler ,
interpPhrase = defInterpPhrase myPasHandler ,
notatePlayer = ()}

and then supply a suitable definition of myPasHandler . Better yet, we could
just do this:

newPlayer :: Player (Pitch, [NoteAttribute ])
newPlayer = defPlayer
{pName = "NewPlayer",
interpPhrase = defInterpPhrase myPasHandler }

This version uses the “record update” syntax to directly derive the new
player from defPlayer .

The definition of myPasHandler can also re-use code, in the following
sense: suppose we wish to add an interpretation for Crescendo, but otherwise
have myPasHandler behave just like defPasHandler .

myPasHandler :: PhraseAttribute → Performance → Performance
myPasHandler (Dyn (Crescendo x )) pf = ...
myPasHandler pa pf = defPasHandler pa pf
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8.2.3 A Fancy Player

Figure 8.6 defines a more sophisticated player called fancyPlayer that knows
all that defPlayer knows, and more. Note that Slurred is different from
Legato in that it does not extend the duration of the last note(s). The
behavior of Ritardando x can be explained as follows. We would like to
“stretch” the time of each event by a factor from 0 to x, linearly interpolated
based on how far along the musical phrase the event occurs. I.e., given a
start time t0 for the first event in the phrase, total phrase duration D, and
event time t, the new event time t′ is given by:

t′ = (1 +
t− t0
D

x)(t− t0) + t0

Further, if d is the duration of the event, then the end of the event t+d gets
stretched to a new time t′d given by:

t′d = (1 +
t+ d− t0

D
x)(t+ d− t0) + t0

The difference t′d − t′ gives us the new, stretched duration d′, which after
simplification is:

d′ = (1 +
2(t− t0) + d

D
x) d

Accelerando behaves in exactly the same way, except that it shortens event
times rather than lengthening them. And a similar but simpler strategy
explains the behaviors of Crescendo and Diminuendo.
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8.3 Putting it all Together

The play function in Euterpea ueses a default player map and a default
context that are defined as follows:

defPMap :: PMap Note1
defPMap "Fancy" = fancyPlayer
defPMap "Default" = defPlayer
defPMap n = defPlayer {pName = n }
defCon :: Context Note1
defCon = Context {cTime = 0,

cPlayer = fancyPlayer ,
cInst = AcousticGrandPiano ,
cDur = metro 120 qn,
cPch = 0,
cKey = (C ,Major ),
cVol = 127}

Note that if anything other than a "Fancy" or "Default" player is specified
in the Music value, such as player "Strange" m, then the default player
defPlayer is used, and given the name "Strange".

If instead we wish to use our own player, say newPlayer defined in Section
8.2.2, then a new player map can be defined, such as:

myPMap :: PlayerName → Player Note1
myPMap "NewPlayer" = newPlayer
myPMap p = defPMap p

Similarly, different versions of the context can be defined based on a
user’s needs.

We could, then, use these versions of player maps and contexts to invoke
the perform function to generate an abstract Performance . Of course, we
ultimately want to hear our music, not just see an abstract Performance
displayed on our computer screen. Recall that play ’s type signature is:

play :: Performable a ⇒ Music a → IO ()

To allow using different player maps and contexts, Euterpea also has a ver-
sion of play called playA whose type signature is:

playA :: Performable a ⇒
PMap Note1 → Context Note1 → Music a → IO ()

For example, to play a Music value m using myPMap defined above and the
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default context defCon , we can do:

playA myPMap defCon m

In later chapters we will learn more about play , and how it converts
a Performance into MIDI events that eventually are heard through your
computer’s sound card.

Exercise 8.1 Fill in the ... in the definition of myPasHandler according
to the following strategy: Gradually scale the volume of each event in the
performance by a factor of 1 through 1 + x , using linear interpolation.

Exercise 8.2 Choose some of the other phrase attributes and provide in-
terpretations for them.

(Hint: As in fancyPlayer , you may not be able to use the “pasHandler”
approach to implement some of the phrase attributes. For example, for a
proper treatment of Trill (and similar ornaments) you will need to access
the cKey field in the context.)

Exercise 8.3 Define a playermyPlayer that appropriately handles the Pedal
articulation and both the ArpeggioUp and ArpeggioDown ornamentations.
You should define myPlayer as a derivative of defPlayer or newPlayer .

Exercise 8.4 Define a player jazzMan (or jazzWoman if you prefer) that
plays a melody using a jazz “swing” feel. Since there are different kinds and
degrees of swing, we can be more specific as follows: whenever there is a
sequence of two eighth notes, they should be interpreted instead as a quarter
note followed by an eighth note, but with tempo 3/2. So in essence, the first
note is lengthened, and the second note is shortened, so that the first note
is twice as long as the second, but they still take up the same amount of
overall time.

(Hint: There are several ways to solve this problem. One surprisingly
effective and straightforward solution is to implement jazzMan as a NoteFun,
not a PhraseFun . In jazz, if an eighth note falls on a quarter-note beat it is
said to fall on the “downbeat,” and the eighth notes that are in between are
said to fall on the “upbeat.” For example, in the phrase c 4 en :+:d 4 en :+:
e 4 en :+: f 4 en, the C and E fall on the downbeat, and the D and F fall
on the upbeat. So to get a “swing feel,” the notes on the down beat need to
be lengthened, and ones on the upbeat need to be delayed and shortened.
Whether an event falls on a downbeat or upbeat can be determined from
the cTime and cDur of the context.)
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Exercise 8.5 Implement the ornamentation DiatonicTrans , which is in-
tended to be a “diatonic tranposition” of a phrase within a particular key.
The argument to DiatonicTrans is an integer representing the number of
scale degrees to do the transposition. For example, the diatonic trans-
position of c 4 en :+: d 4 en :+: e 4 en in C major by 2 scale degrees
should yield e 4 en :+: f 4 en :+: g 4 en, whereas in G major should yield
e 4 en :+: fs 4 en :+: g 4 en.

(Hint: You will need to access the key from the context (using cKey).
Thus, as with fancyPlayer , you may not be able to use the “pasHandler”
approach to solve this problem.)
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fancyPlayer :: Player (Pitch, [NoteAttribute ])
fancyPlayer = MkPlayer {pName = "Fancy",

playNote = defPlayNote defNasHandler ,
interpPhrase = fancyInterpPhrase ,
notatePlayer = ()}

fancyInterpPhrase :: PhraseFun a
fancyInterpPhrase pm c [ ] m = perf pm c m
fancyInterpPhrase pm
c@Context {cTime = t , cPlayer = pl , cInst = i ,

cDur = dt , cPch = k , cVol = v }
(pa : pas) m =
let pfd@(pf , dur) = fancyInterpPhrase pm c pas m

loud x = fancyInterpPhrase pm c (Dyn (Loudness x ) : pas) m
stretch x = let t0 = eTime (head pf ); r = x /dur

upd (e@Event {eTime = t , eDur = d }) =
let dt = t − t0

t ′ = (1 + dt ∗ r) ∗ dt + t0
d ′ = (1 + (2 ∗ dt + d) ∗ r) ∗ d

in e {eTime = t ′, eDur = d ′}
in (map upd pf , (1 + x ) ∗ dur)

inflate x = let t0 = eTime (head pf );
r = x /dur
upd (e@Event {eTime = t , eVol = v }) =
e {eVol = round ((1 + (t − t0) ∗ r) ∗

fromIntegral v)}
in (map upd pf , dur)

in case pa of
Dyn (Accent x )→
(map (λe → e {eVol = round (x ∗ fromIntegral (eVol e))}) pf , dur)

Dyn (StdLoudness l)→
case l of
PPP → loud 40; PP → loud 50; P → loud 60
MP → loud 70; SF → loud 80; MF → loud 90
NF → loud 100;FF → loud 110;FFF → loud 120

Dyn (Loudness x ) → fancyInterpPhrase pm
c {cVol = round x } pas m

Dyn (Crescendo x ) → inflate x ;Dyn (Diminuendo x )→ inflate (−x )
Tmp (Ritardando x )→ stretch x ;Tmp (Accelerando x )→ stretch (−x )
Art (Staccato x ) → (map (λe → e {eDur = x ∗ eDur e }) pf , dur)
Art (Legato x ) → (map (λe → e {eDur = x ∗ eDur e }) pf , dur)
Art (Slurred x ) →
let lastStartTime = foldr (λe t → max (eTime e) t) 0 pf

setDur e = if eTime e < lastStartTime
then e {eDur = x ∗ eDur e }
else e

in (map setDur pf , dur)
Art → pfd
Orn → pfd

Figure 8.6: Definition of Player fancyPlayer .



Chapter 9

Self-Similar Music

module Euterpea.Examples .SelfSimilar where
import Euterpea

In this chapter we will explore the notion of self-similar music—i.e. mu-
sical structures that have patterns that repeat themselves recursively in in-
teresting ways. There are many approaches to generating self-similar struc-
tures, the most well-known being fractals, which have been used to generate
not just music, but also graphical images. We will delay a general treatment
of fractals, however, and will instead focus on more specialized notions of
self-similarity, notions that we conceive of musically, and then manifest as
Haskell programs.

9.1 Self-Similar Melody

Here is the first notion of self-similar music that we will consider: Begin
with a very simple melody of n notes. Now duplicate this melody n times,
playing each in succession, but first perform the following transformations:
transpose the ith melody by an amount proportional to the pitch of the ith
note in the original melody, and scale its tempo by a factor proportional to
the duration of the ith note. For example, Figure 9.1 shows the result of
applying this process once to a four-note melody (the first four notes form
the original melody). Now imagine that this process is repeated infinitely
often. For a melody whose notes are all shorter than a whole note, it yields
an infinitely dense melody of infinitesimally shorter notes. To make the
result playable, however, we will stop the process at some pre-determined

153



CHAPTER 9. SELF-SIMILAR MUSIC 154

1

 

98&
1 

q
cq cq q q q q q

&
2 

q q q# q# q
cq cq q

Figure 9.1: An Example of Self-Similar Music

level.

How can this be represented in Haskell? A tree seems like it would be a
logical choice; let’s call it a Cluster :

data Cluster = Cluster SNote [Cluster ]
type SNote = (Dur ,AbsPitch)

This particular kind of tree happens to be called a rose tree []. An SNote is
just a “simple note,” a duration paired with an absolute pitch. We prefer
to stick with absolute pitches in creating the self-similar structure, and will
convert the result into a normal Music value only after we are done.

The sequence of SNotes at each level of the cluster is the melodic frag-
ment for that level. The very top cluster will contain a “dummy” note,
whereas the next level will contain the original melody, the next level will
contain one iteration of the process described above (e.g. the melody in
Figure 9.1), and so forth.

To achieve this we will define a function selfSim that takes the initial
melody as argument and generates an infinitely deep cluster:

selfSim :: [SNote ]→ Cluster
selfSim pat = Cluster (0, 0) (map mkCluster pat)

where mkCluster note =
Cluster note (map (mkCluster ◦ addMult note) pat)

addMult :: SNote → SNote → SNote
addMult (d0, p0) (d1, p1) = (d0 ∗ d1, p0 + p1)

Note that selfSim itself is not recursive, but mkCluster is. This code should
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be studied carefully. In particualr, the recursion in mkCluster is differ-
ent from what we have seen before, as it is not a direct invocation of
mkCluster , but rather it is a high-order argument to map (which in turn
invokes mkCluster an aribtrary number of times).

Next, we define a function to skim off the notes at the nth level, or nth

“fringe,” of a cluster:

fringe :: Int → Cluster → [SNote ]
fringe 0 (Cluster note cls) = [note ]
fringe n (Cluster note cls) = concatMap (fringe (n − 1)) cls

Details: concatMap is defined in the Standard Prelude as:

concatMap :: (a → [b ])→ [a ]→ [b ]
concatMap f = concat ◦map f

Recall that concat appends together a list of lists, and is defined in the Prelude
as:

concat :: [ [a ] ]→ [a ]
concat = foldr (++) [ ]

All that is left to do is convert this into a Music value that we can play:

simToMusic :: [SNote ]→ Music Pitch
simToMusic ss = let mkNote (d , ap) = note d (pitch ap)

in line (map mkNote ss)

We can define this with a bit more elegance as follows:

simToMusic :: [SNote ]→ Music Pitch
simToMusic = line ◦map mkNote

mkNote :: (Dur ,AbsPitch)→ Music Pitch
mkNote (d , ap) = note d (pitch ap)

The increased modularity will allow us to reuse mkNote later in the chapter.

Putting it all together, we can define a function that takes an initial
pattern, a level, a number of pitches to transpose the result, and a tempo
scaling factor, to yield a final result:

ss pat n tr te =
transpose tr $ tempo te $ simToMusic $ fringe n $ selfSim pat
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9.1.1 Sample Compositions

Let’s start with a melody with no rhythmic variation.

m0 :: [SNote ]
m0 = [(1, 2), (1, 0), (1, 5), (1, 7)]

tm0 = instrument Vibraphone (ss m0 4 50 20)

One fun thing to do with music like this is to combine it with variations of
itself. For example:

ttm0 = tm0 :=: transpose (12) (revM tm0)

We could also try the opposite: a simple percussion instrument with no
melodic variation, i.e. all rhythm:

m1 :: [SNote ]
m1 = [(1, 0), (0.5, 0), (0.5, 0)]

tm1 = instrument Percussion (ss m1 4 43 2)

Note that the pitch is transposed by 43, which is the MIDI Key number for a
“high floor tom” (i.e. percussion sound HighFloorTom—recall the discussion
in Section 6.12).

Here is a very simple melody, two different pitches and two different
durations:

m2 :: [SNote ]
m2 = [(dqn, 0), (qn , 4)]

tm2 = ss m2 6 50 (1/50)

Here are some more exotic compositions, combining both melody and
rhythm:

m3 :: [SNote ]
m3 = [(hn , 3), (qn , 4), (qn , 0), (hn , 6)]

tm3 = ss m3 4 50 (1/4)

ttm3 = let l1 = instrument Flute tm3

l2 = instrument AcousticBass $
transpose (−9) (revM tm3)

in l1 :=: l2

m4 :: [SNote ]
m4 = [(hn , 3), (hn , 8), (hn , 22), (qn , 4), (qn , 7), (qn , 21),

(qn, 0), (qn , 5), (qn , 15), (wn , 6), (wn , 9), (wn , 19)]

tm4 = ss m4 3 50 8
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Exercise 9.1 Experiment with this idea futher, using other melodic seeds,
exploring different depths of the clusters, and so on.

Exercise 9.2 Note that concat is defined as foldr (++) [ ], which means that
it takes a number of steps proportional to the sum of the lengths of the lists
being concatenated; we cannot do any better than this. (If foldl were used
instead, the number of steps would be proportional to the number of lists
times their average length.)

However, fringe is not very efficient, for the following reason: concat is
being used over and over again, like this:

concat [concat [ ... ], concat [ ... ], concat [ ... ] ]

This causes a number of steps proportional to the depth of the tree times
the length of the sub-lists; clearly not optimal.

Define a version of fringe that is linear in the total length of the final
list.

9.2 Self-Similar Harmony

In the last section we used a melody as a seed, and created longer melodies
from it. Another idea is to stack the melodies vertically. Specifically, suppose
we redefine fringe in such a way that it does not concatenate the sub-clusters
together:

fringe ′ :: Int → Cluster → [ [SNote ] ]
fringe ′ 0 (Cluster note cls) = [[note ] ]
fringe ′ n (Cluster note cls) = map (fringe (n − 1)) cls

Note that this strategy is only applied to the top level—below that we use
fringe. Thus the type of the result is [[SNote ] ], i.e. a list of lists of notes.

We can convert the individual lists into melodies, and play the melodies
all together, like this:

simToMusic′ :: [ [SNote ] ]→ Music Pitch
simToMusic′ = chord ◦map (line ◦map mkNote)

Finally, we can define a function akin to ss defined earlier:

ss ′ pat n tr te =
transpose tr $ tempo te $ simToMusic′ $ fringe ′ n $ selfSim pat
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Using some of the same patterns used earlier, here are some sample
compositions (with not necessarily a great outcome...):

ss1 = ss ′ m2 4 50 (1/8)
ss2 = ss ′ m3 4 50 (1/2)
ss3 = ss ′ m4 3 50 2

Here is a new one, based on a major triad:

m5 = [(en, 4), (sn , 7), (en , 0)]
ss5 = ss m5 4 45 (1/500)
ss6 = ss ′ m5 4 45 (1/1000)

Note the need to scale the tempo back drastically, due to the short durations
of the starting notes.

9.3 Other Self-Similar Structures

The reader will observe that our notion of “self-similar harmony” does not
involve changing the structure of the Cluster data type, nor the algorithm
for computing the sub-structures (as captured in selfSim). All that we
do is interpret the result differently. This is a common characteristic of
algorithmic music composition—the same mathematical or computational
structure is interpreted in different ways to yield musically different results.

For example, instead of the above strategy for playing melodies in paral-
lel, we could play entire levels of the Cluster in parallel, where the number
of levels that we choose is given as a parameter. If alligned properly in time
there will be a harmonic relationship between the levels, which could yield
pleasing results.

The Cluster data type is conceptually useful in that is represents the
infinite solution space of self-simlar melodies. And it is computationally
useful in that it is computed to a desired depth only once, and thus can be
inspected and reused without recomputing each level of the tree. This idea
might be useful in the application mentioned above, namely combining two
or more levels of the result in interesting ways.

However, the Cluster data type is strictly unnecessary, in that, for ex-
ample, if we are interested in computing a specific level, we could define
a function that recursed to that level and gave the result directly, without
saving the intermediate levels.
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A final point about the notion of self-similarity captured in this chapter
is that the initial pattern is used as the basis with which to transform each
successive level. Another strategy would be to use the entirety of each
new level as the seed for transforming itself into the next level. This will
result in an exponential blow-up in the size of each level, but may be worth
pursuing—in some sense it is a simpler notion of self-similarity than what
we have used in this chapter.

All of the ideas in this section, and others, we leave as exercises for the
reader.

Exercise 9.3 Experiment with the self-similar programs in this chapter.
Compose an interesting piece of music through a judicious choice of starting
melody, depth of recursion, instrumentation, etc.

Exercise 9.4 Devise an interpretation of a Cluster that plays multiple lev-
els of the Cluster in parallel. Try to get the levels to align properly in time
so that each level has the same duration. You may choose to play all the
levels up to a certain depth in parallel, or levels within a certain range, say
levels 3 through 5.

Exercise 9.5 Define an alternative version of simToMusic that interprets
the music differently. For example:

• Interpret the pitch as an index into a scale—e.g., as an index into the
C major scale, so that 0 corresponds to C, 1 to D, 2 to E, 3 to F, ...,
6 to B, 7 to C in the next octave, and so on.

• Interpret the pitch as duration, and the duration as pitch.

Exercise 9.6 Modify the self-similar code in the following ways:

• Add a Volume component to SNote (in other words, define it as a triple
instead of a pair), and redefine addMult so that it takes two of these
triples and combines them in a suitable way. Then modify the rest of
the code so that the result is aMusic1 value. With these modifications,
compose something interesting that highlights the changes in volume.

• Change the AbsPitch field in SNote to be a list of AbsPitchs, to be
interpreted ultimately as a chord. Figure out some way to combine
them in addMult , and compose something interesting.
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Exercise 9.7 Devise some other variant of self-similar music, and encode
it in Haskell. In particular, consider structures that are different from those
generated by the selfSim function.

Exercise 9.8 Define a function that gives the same result as ss, but without
using a data type such as Cluster .

Exercise 9.9 Define a version of self-similarity similar to that defined in
this chapter, but that uses the entire melody generated at one level to trans-
form itself into the next level (rather than using the original seed pattern).



Chapter 10

Proof by Induction

In this chapter we will study a powerful proof technique based on mathemat-
ical induction. With it we will be able to prove complex and important prop-
erties of programs that cannot be accomplished with proof-by-calculation
alone. The inductive proof method is one of the most powerful and common
methods for proving program properties.

10.1 Induction and Recursion

Induction is very closely related to recursion. In fact, in certain contexts
the terms are used interchangeably; in others, one is preferred over the other
primarily for historical reasons. Think of them as being duals of one another:
induction is used to describe the process of starting with something small and
simple, and building up from there, whereas recursion describes the process
of starting with something large and complex, and working backward to the
simplest case.

For example, although we have previously used the phrase recursive data
type, in fact data types are often described inductively, such as a list:

A list is either empty, or it is a pair consisting of a value and
another list.

On the other hand, we usually describe functions that manipulate lists,
such as map and foldr , as being recursive. This is because when you apply
a function such as map, you apply it initially to the whole list, and work
backwards toward [ ].

161
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But these differences between induction and recursion run no deeper:
they are really just two sides of the same coin.

This chapter is about inductive properties of programs (but based on
the above argument could just as rightly be called recursive properties) that
are not usually proven via calculation alone. Proving inductive properties
usually involves the inductive nature of data types and the recursive nature
of functions defined on the data types.

As an example, suppose that p is an inductive property of a list. In
other words, p (l) for some list l is either true or false (no middle ground!).
To prove this property inductively, we do so based on the length of the list:
starting with length 0, we first prove p ([ ]) (using our standard method of
proof-by-calculation).

Now for the key step: assume for the moment that p (xs) is true for any
list xs whose length is less than or equal to n. Then if we can prove (via
calculation) that p (x : xs) is true for any x—i.e. that p is true for lists of
length n +1—then the claim is that p is true for lists of any (finite) length.

Why is this so? Well, from the first step above we know that p is true
for length 0, so the second step tells us that it is also true for length 1. But
if it is true for length 1 then it must also be true for length 2; similarly for
lengths 3, 4, etc. So p is true for lists of any length!

(It it important to realize, however, that a property being true for every
finite list does not necessarily imply that it is true for every infinite list. The
property “the list is finite” is a perfect example of this! We will see how to
prove properties of infinite lists in Chapter ??.)

To summarize, to prove a property p by induction on the length of a list,
we proceed in two steps:

1. Prove p ([ ]) (this is called the base case).

2. Assume that p (xs) is true (this is called the induction hypothesis, and
prove that p (x : xs) is true (this is called the induction step).

10.2 Examples of List Induction

Ok, enough talk, let’s see this idea in action. Recall in Section 3.1 the
following property about foldr:

(∀xs) foldr (:) [ ] xs =⇒ xs
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We will prove this by induction on the length of xs. Following the ideas
above, we begin with the base case by proving the property for length 0; i.e.
for xs = [ ]:

foldr (:) [ ] [ ]
⇒ {unfold foldr }
[ ]

This step is immediate from the definition of foldr . Now for the induction
step: we first assume that the property is true for all lists xs of length n,
and then prove the property for list x : xs . Again proceeding by calculation:

foldr (:) [ ] (x : xs)
⇒ {unfold foldr }
x : foldr (:) [ ] xs
⇒ {induction hypothesis }
x : xs

And we are done; the induction hypothesis is what justifies the second step.

Now let’s do something a bit harder. Suppose we are interested in prov-
ing the following property:

(∀xs, ys) length (xs ++ ys) = length xs + length ys

Our first problem is to decide which list to perform the induction over. A
little thought (in particular, a look at how the definitions of length and (++)
are structured) should convince you that xs is the right choice. (If you
do not see this, you are encouraged to try the proof by induction over the
length of ys!) Again following the ideas above, we begin with the base case
by proving the property for length 0; i.e. for xs = [ ]:

length ([ ] ++ ys)
⇒ {unfold (++)}
length ys
⇒ {fold (+)}
0 + length ys
⇒ {fold length }
length [ ] + length ys

For the induction step, we first assume that the property is true for all lists
xs of length n, and then prove the property for list x : xs . Again proceeding
by calculation:

length ((x : xs) ++ ys)
⇒ {unfold (++)}
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length (x : (xs ++ ys))
⇒ {unfold length }
1 + length (xs ++ ys)
⇒ {induction hypothesis }
1 + (length xs + length ys)
⇒ {associativity of (+)}
(1 + length xs) + length ys
⇒ {fold length }
length (x : xs) + length ys

And we are done. The transition from the 3rd line to the 4th is where the
induction hypothesis is used.

10.3 Proving Function Equivalences

At this point it is a simple matter to return to Chapter 3 and supply the
proofs that functions defined using map and fold are equivalent to the
recursively defined versions. In particular, recall these two definitions of
toAbsPitches :

toAbsPitches1 [ ] = [ ]
toAbsPitches1 (p : ps) = absPitch p : toAbsPitches1 ps

toAbsPitches2 = map absPitch

We want to prove that toAbsPitches1 = toAbsPitches2. To do so, we use the
extensionality principle (briefly discussed in Section 3.6.1), which says that
two functions are equal if, when applied to the same value, they always yield
the same result. We can change the specification slightly to reflect this. For
any finite list ps , we want to prove:

toAbsPitches1 ps = toAbsPitches2 ps

We proceed by induction, starting with the base case ps = [ ]:

toAbsPitches1 [ ]
⇒ [ ]
⇒ map absPitch [ ]
⇒ toAbsPitches2 [ ]

Next we assume that toAbsPitches1 ps = toAbsPitches2 ps holds, and try
to prove that toAbsPitches1 (p : ps) = toAbsPitches2 (p : ps):

toAbsPitches1 (p : ps)
⇒ absPitch p : toAbsPitches1 ps
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⇒ absPitch p : toAbsPitches2 ps
⇒ absPitch p :map absPitch ps
⇒ map absPitch (p : ps)

Note the use of the induction hypothesis in the second step.

For a proof involving foldr , recall from Chapter 3 this recursive definition
of line:

line1 [ ] = rest 0
line1 (m :ms) = m :+: line1 ms

and this non-recursive version:

line2 = foldr (:+:) (rest 0)

We can prove that these two functions are equivalent by induction. First
the base case:

line1 [ ]
⇒ rest 0
⇒ foldr (:+:) (rest 0) [ ]
⇒ line2 [ ]

Then the induction step:

line1 (m :ms)
⇒ m :+: line1 ms
⇒ m :+: line2 ms
⇒ m :+: foldr (:+:) (rest 0) ms
⇒ foldr (:+:) (rest 0) (m :ms)
⇒ line2 (m :ms)

The proofs of equivalence of the definitions of toPitches , chord ,maxPitch,
and hList from Chapter 3 are similar, and left as an exercise.

Exercise 10.1 From Chapter 3, prove that the original recursive versions
of the following functions are equivalent to the versions using map or fold :
toPitches , chord , maxPitch, and hList .

10.3.1 [Advanced] Reverse

The proofs of function equivalence in the last section were fairly straight-
forward. For something more challenging, consider the definition of reverse
given in Section 3.5:
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reverse1 [ ] = [ ]
reverse1 (x : xs) = reverse1 xs ++ [x ]

and the version given in Section 3.6:

reverse2 xs = foldl (flip (:)) [ ] xs

We would like to show that these are the same; i.e. that reverse1 xs =
reverse2 xs for any finite list xs . In carrying out this proof one new idea will
be demonstrated, namely the need for an auxiliary property which is proved
independently of the main result.

The base case is easy, as it often is:

reverse1 [ ]
⇒ [ ]
⇒ foldl (flip (:)) [ ] [ ]
⇒ reverse2 [ ]

Assume now that reverse1 xs = reverse2 xs . The induction step proceeds
as follows:

reverse1 (x : xs)
⇒ reverse1 xs ++ [x ]
⇒ reverse2 xs ++ [x ]
⇒ foldl (flip (:)) [ ] xs ++ [x ]
⇒ ???

But now what do we do? Intuitively, it seems that the following property,
which we will call property (1), should hold:

foldl (flip (:)) [ ] xs ++ [x ]
⇒ foldl (flip (:)) [ ] (x : xs)

in which case we could complete the proof as follows:

...
⇒ foldl (flip (:)) [ ] xs ++ [x ]
⇒ foldl (flip (:)) [ ] (x : xs)
⇒ reverse2 (x : xs)

The ability to see that if we could just prove one thing, then perhaps
we could prove another, is a useful skill in conducting proofs. In this case
we have reduced the overall problem to one of proving property (1), which
simplifies the structure of the proof, although not necessarily the difficulty.
These auxiliary properties are often called lemmas in mathematics, and in
many cases their proofs become the most important contributions, since
they are often at the heart of a problem.
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In fact if you try to prove property (1) directly, you will run into a
problem, namely that it is not general enough. So first let’s generalize
property (1) (while renaming x to y), as follows:

foldl (flip (:)) ys xs ++ [y ]
⇒ foldl (flip (:)) (ys ++ [y ]) xs

Let’s call this property (2). If (2) is true for any finite xs and ys , then
property (1) is also true, because:

foldl (flip (:)) [ ] xs ++ [x ]
⇒ {property (2)}
foldl (flip (:)) ([ ] ++ [x ]) xs
⇒ {unfold (++)}
foldl (flip (:)) [x ] xs
⇒ {fold (flip (:))}
foldl (flip (:)) (flip (:) [ ] x ) xs
⇒ {fold foldl }
foldl (flip (:)) [ ] (x : xs)

You are encouraged to try proving property (1) directly, in which case
you will likely come to the same conclusion, namely that the property needs
to be generalized. This is not always easy to see, but is sometimes an
important step is constructing a proof, because, despite being somewhat
counterintuitive, it is often the case that making a property more general
(and therefore more powerful) makes it easier to prove.

In any case, how do we prove property (2)? Using induction, of course!
Setting xs to [ ], the base case is easy:

foldl (flip (:)) ys [ ] ++ [y ]
⇒ {unfold foldl }
ys ++ [y ]
⇒ {fold foldl }
foldl (flip (:)) (ys ++ [y ]) [ ]

and the induction step proceeds as follows:

foldl (flip (:)) ys (x : xs) ++ [y ]
⇒ {unfold foldl }
foldl (flip (:)) (flip (:) ys x ) xs ++ [y ]
⇒ {unfold flip}
foldl (flip (:)) (x : ys) xs ++ [y ]
⇒ {induction hypothesis }
foldl (flip (:)) ((x : ys) ++ [y ]) xs
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⇒ {unfold (++)}
foldl (flip (:)) (x : (ys ++ [y ])) xs
⇒ {fold foldl }
foldl (flip (:)) (ys ++ [y ]) (x : xs)

10.4 Useful Properties on Lists

There are many useful properties of functions on lists that require inductive
proofs. Figures 10.1 and 10.2 list a number of them involving functions used
in this text, but their proofs are left as exercises (except for one; see below).
You may assume that these properties are true, and use them freely in
proving other properties of your programs. In fact, some of these properties
can be used to simplify the proof that reverse1 and reverse2 are the same;
see if you can find them!1

(Note, by the way, that in the first rule for map in Figure 10.1, the type
of λx → x on the left-hand side is a → b, whereas on the right-hand side it
is [a ]→ [b ]; i.e. these are really two different functions.)

10.4.1 [Advanced] Function Strictness

Note that the last rule formap in Figure 10.1 is only valid for strict functions.
A function f is said to be strict if f ⊥ = ⊥. Recall from Section 1.4 that
⊥ is the value associated with a non-terminating computation. So another
way to think about a strict function is that it is one that, when applied to
a non-terminating computation, results in a non-terminating computation.
For example, the successor function (+1) is strict, because (+1) ⊥ = ⊥+ 1
= ⊥. In other words, if you apply (+1) to a non-terminating computation,
you end up with a non-terminating computation.

Not all functions in Haskell are strict, and we have to be careful to say
on which argument a function is strict. For example, (+) is strict on both
of its arguments, which is why the section (+1) is also strict. On the other
hand, the constant function:

const x y = x

is strict on its first argument (why?), but not its second, because const x ⊥
= x , for any x .

1More thorough discussions of these properties and their proofs may be found in [BW88,
Bir98].
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Properties of map:
map (λx → x ) = λx → x
map (f ◦ g) = map f ◦map g
map f ◦ tail = tail ◦map f
map f ◦ reverse = reverse ◦map f
map f ◦ concat = concat ◦map (map f )
map f (xs ++ ys) = map f xs ++map f ys

For all strict f :
f ◦ head = head ◦map f

Properties of the fold functions:

1. If op is associative, and e ‘op‘ x = x and x ‘op‘ e = x for all x , then
for all finite xs :

foldr op e xs = foldl op e xs

2. If the following are true:

x ‘op1‘ (y ‘op2 ‘ z ) = (x ‘op1‘ y) ‘op2 ‘ z
x ‘op1‘ e = e ‘op2 ‘ x

then for all finite xs :

foldr op1 e xs = foldl op2 e xs

3. For all finite xs :

foldr op e xs = foldl (flip op) e (reverse xs)

Figure 10.1: Some Useful Properties of map and fold .
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Properties of (++):

For all xs , ys , and zs :
(xs ++ ys) ++ zs = xs ++ (ys ++ zs)
xs ++ [ ] = [ ] ++ xs = xs

Properties of take and drop:

take m ◦ take n = take (min m n)
drop m ◦ drop n = drop (m + n)
take m ◦ drop n = drop n ◦ take (m + n)

For all non-negative m and n such that n > m:
drop m ◦ take n = take (n −m) ◦ drop m

For all non-negative m and n, and finite xs :
take n xs ++ drop n xs = xs

Properties of reverse:

For all finite xs :
reverse (reverse xs) = xs
head (reverse xs) = last xs
last (reverse xs) = head xs

Figure 10.2: Useful Properties of Other Functions Over Lists
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Details: Understanding strictness requires a careful understanding of Haskell’s
pattern-matching rules. For example, consider the definition of (∧) from the
Standard Prelude:

(∧) :: Bool → Bool → Bool
True ∧ x = x
False ∧ = False

When choosing a pattern to match, Haskell starts with the top, left-most pattern,
and works to the right and downward. So in the above, (∧) first evaluates its left
argument. If that value is True, then the first equation succeeds, and the second
argument gets evaluated because that is the value that is returned. But if the first
argument is False, the second equation succeeds. In particular, it does not bother
to evaluate the second argument at all, and simply returns False as the answer.
This means that (∧) is strict in its first argument, but not its second.

A more detailed discussion of pattern matching is found in Appendix D.

Let’s now look more closely at the last law for map, which says that for
all strict f :

f ◦ head = head ◦map f

Let’s try to prove this property, starting with the base case, but ignoring
for now the strictness constraint on f :

f (head [ ])
⇒ f ⊥

head [ ] is an error, which you will recall has value ⊥. So you can see imme-
diately that the issue of strictness might play a role in the proof, because
without knowing anything about f , there is no further calculation to be done
here. Similarly, if we start with the right-hand side:

head (map f [ ])
⇒ head [ ]
⇒ ⊥

It should be clear that for the base case to be true, it must be that f ⊥ = ⊥;
i.e., f must be strict. Thus we have essentially “discovered” the constraint
on the theorem through the process of trying to prove it! (This is not an
uncommon phenomenon.)

The induction step is less problematic:

f (head (x : xs))
⇒ f x
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⇒ head (f x :map f xs)
⇒ head (map f (x : xs))

and we are done.

Exercise 10.2 Prove as many of the properties in Figures 10.1 and 10.2 as
you can.

Exercise 10.3 Which of the following functions are strict (if the function
takes more than one argument, specify on which arguments it is strict):
reverse , simple, map, tail , dur , revM , (∧), (True ∧), (False ∧), and the
following function:

ifFun :: Bool → a → a → a
ifFun pred cons alt = if pred then cons else alt

10.5 Induction on the Music Data Type

Proof by induction is not limited to lists. In particular, we can use it to
reason about Music values.

For example, recall this property intuitively conjectured in Section 6.14:

mFold Prim (:+:) (:=:) Modify m = m

To prove this, we again use the extensionality principle, and then proceed
by induction. But what is the base case? Recall that the Music data type
is defined as:

data Music a =
Prim (Primitive a)
| Music a :+:Music a
| Music a :=:Music a
| Modify Control (Music a)

The only constructor that does not take a Music value as an argument is
Prim , so that in fact is the only base case.

So, starting with this base case:

mFold Prim (:+:) (:=:) Modify (Prim p)
⇒ Prim p
⇒ id (Prim p)



CHAPTER 10. PROOF BY INDUCTION 173

That was easy! Next, we develop an induction step for each of the three
non-base cases:

mFold Prim (:+:) (:=:) Modify (m1 :+:m2)
⇒ mFold Prim (:+:) (:=:) Modify m1 :+:

mFold Prim (:+:) (:=:) Modify m2

⇒ m1 :+:m2

⇒ id (m1 :+:m2)

mFold Prim (:+:) (:=:) Modify (m1 :=:m2)
⇒ mFold Prim (:+:) (:=:) Modify m1 :=:

mFold Prim (:+:) (:=:) Modify m2

⇒ m1 :=:m2

⇒ id (m1 :=:m2)

mFold Prim (:+:) (:=:) Modify (Modify c m)
⇒ Modify c (mFold Prim (:+:) (:=:) Modify m)
⇒ Modify c m
⇒ id (Modify c m)

These three steps were quite easy as well, but is not something we could
have done without induction.

For something more challenging, let’s consider the following:

dur (revM m) = dur m

Again we proceed by induction, starting with the base case:

dur (revM (Prim p))
⇒ dur (Prim p)

Sequential composition is straightforward:

dur (revM (m1 :+:m2))
⇒ dur (revM m2 :+: revM m1)
⇒ dur (revM m2) + dur (revM m1)
⇒ dur m2 + dur m1

⇒ dur m1 + dur m2

⇒ dur (m1 :+:m2)

But things get more complex with parallel composition:

dur (revM (m1 :=:m2))
⇒ dur (let d1 = dur m1

d2 = dur m2

in if d1 > d2 then revM m1 :=: (rest (d1 − d2) :+: revM m2)
else (rest (d2 − d1) :+: revM m1) :=: revM m2)
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⇒ let d1 = dur m1

d2 = dur m2

in if d1 > d2 then dur (revM m1 :=: (rest (d1 − d2) :+: revM m2))
else dur ((rest (d2 − d1) :+: revM m1) :=: revM m2)

...

At this point, to make things easier to understand, we will consider each
branch of the conditional in turn. First the consequent branch:

dur (revM m1 :=: (rest (d1 − d2) :+: revM m2))
⇒ max (dur (revM m1)) (dur (rest (d1 − d2) :+: revM m2))
⇒ max (dur m1) (dur (rest (d1 − d2) :+: revM m2))
⇒ max (dur m1) (dur (rest (d1 − d2)) + dur (revM m2))
⇒ max (dur m1) ((d1 − d2) + dur m2)
⇒ max (dur m1) (dur m1)
⇒ dur m1

And then the alternative:

dur ((rest (d2 − d1) :+: revM m1) :=: revM m2)
⇒ max (dur ((rest (d2 − d1) :+: revM m1)) (dur (revM m2))
⇒ max (dur ((rest (d2 − d1) :+: revM m1)) (dur m2)
⇒ max (dur (rest (d2 − d1)) + dur (revM m1)) (dur m2)
⇒ max ((d2 − d1) + dur m1) (dur m2)
⇒ max (dur m2) (dur m2)
⇒ dur m2

Now we can continue the proof from above:

...
⇒ let d1 = dur m1

d2 = dur m2

in if d1 > d2 then dur m1

else dur m2

⇒ max (dur m1) (dur m2)
⇒ dur (m1 :=:m2)

The final inductive step involves the Modify constructor, but recall that
dur treats a Tempo modification specially, and thus we treat it specially as
well:

dur (revM (Modify (Tempo r) m))
⇒ dur (Modify (Tempo r) (revM m))
⇒ dur (revM m)/r
⇒ dur m/r
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⇒ dur (Modify (Tempo r) m)

Finally, we consider the case that c 6= Tempo r :

dur (revM (Modify c m))
⇒ dur (Modify c (revM m))
⇒ Modify c (dur (revM m))
⇒ Modify c (dur m)
⇒ dur (Modify c m)

And we are done.

Exercise 10.4 Recall Exercises 3.11 and 3.12. Prove that, if p2 > p1:

chrom p1 p2 = mkScale p1 (take (absPitch p2 − absPitch p1)
(repeat 1))

using the lemma:

[m . . n ] = scanl (+) m (take (n −m) (repeat 1))

Exercise 10.5 Prove the following facts involving dur :

dur (timesM n m) = n ∗ dur m
dur (takeM d m) = d , if d 6 dur m

Exercise 10.6 Prove the following facts involving mMap:

mMap id m = m
mMap f (mMap g m) = mMap (f ◦ g) m

Exercise 10.7 Prove that, for all pmap, c, and m:

perf pmap c m = (perform pmap c m, dur m)

where perform is the function defined in Figure 8.1.

10.5.1 The Need for Musical Equivalence

In Chapter 1 we discussed the need for a notion of musical equivalence,
noting that, for example, m :+: rest 0 “sounds the same” as m, even if the
two Music values are not equal as Haskell values. That same issue can strike
us here as we try to prove intuitively natural properties such as:

revM (revM m) = m
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To see why this property cannot be proved without a notion of musical
equivalence, note that:

revM (revM (c 4 en :=: d 4 qn))
=⇒ revM ((rest en :+: c 4 en) :=: d 4 qn)
=⇒ (rest 0 :+: c 4 en :+: rest en) :=: d 4 qn

Clearly the last line above is not equal, as a Haskell value, to c 4 en :=:d 4 qn.
But somehow we need to show that these two values “sound the same” as
musical values. In the next chapter we will formally develop the notion of
musical equivalence, and with it be able to prove the validity of our intuitions
regarding revM , as well as many other important musical properties.

10.6 [Advanced] Induction on Other Data Types

Proof by induction can be used to reason about many data types. For
example, we can use it to reason about natural numbers.2 Suppose we
define an exponentiation function as follows:

(ˆ) :: Integer → Integer → Integer
xˆ0 = 1
xˆn = x ∗ xˆ(n − 1)

Details: (∗) is defined in the Standard Prelude to have precedence level 7, and

recall that if no infix declaration is given for an operator it defaults to precedence

level 9, which means that (ˆ) has precedence level 9, which is higher than that

for (∗). Therefore no parentheses are needed to disambiguate the last line in the

definition above, which corresponds nicely to mathematical convention.

Now suppose that we want to prove that:

(∀x, n > 0,m > 0) xˆ(n +m) = xˆn ∗ xˆm

We proceed by induction on n, beginning with n = 0:

xˆ(0 +m)
⇒ xˆm

2Indeed, one could argue that a proof by induction over finite lists is really an induction
over natural numbers, since it is an induction over the length of the list, which is a natural
number.
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⇒ 1 ∗ (xˆm)
⇒ xˆ0 ∗ xˆm

Next we assume that the property is true for numbers less than or equal
to n, and prove it for n + 1:

xˆ((n + 1) +m)
⇒ x ∗ xˆ(n +m)
⇒ x ∗ (xˆn ∗ xˆm)
⇒ (x ∗ xˆn) ∗ xˆm
⇒ xˆ(n + 1) ∗ xˆm

and we are done.

Or are we? What if, in the definition of (ˆ), x or n is negative? Since a
negative integer is not a natural number, we could dispense with the problem
by saying that these situations fall beyond the bounds of the property we are
trying to prove. But let’s look a little closer. If x is negative, the property
we are trying to prove still holds (why?). But if n is negative, xˆn will not
terminate (why?). As diligent programmers we may wish to defend against
the latter situation by writing:

(ˆ) :: Integer → Integer → Integer
xˆ0 = 1
xˆn | n < 0 = error "negative exponent"

| otherwise = x ∗ xˆ(n − 1)

If we consider non-terminating computations and ones that produce an error
to both have the same value, namely ⊥, then these two versions of (ˆ) are
equivalent. Pragmatically, however, the latter is clearly superior.

Note that the above definition will test for n < 0 on every recursive call,
when actually the only call in which it could happen is the first. Therefore
a slightly more efficient version of this program would be:

(ˆ) :: Integer → Integer → Integer
xˆn | n < 0 = error "negative exponent"

| otherwise = f x n
where f x 0 = 1

f x n = x ∗ f x (n − 1)

Proving the property stated earlier for this version of the program is straight-
forward, with one minor distinction: what we really need to prove is that
the property is true for f ; that is:

(∀x, n > 0,m > 0) f x (n +m) = f x n ∗ f x m
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from which the proof for the whole function follows trivially.

10.6.1 A More Efficient Exponentiation Function

But in fact there is a more serious inefficiency in our exponentiation func-
tion: we are not taking advantage of the fact that, for any even number n,
xn = (x ∗ x)n/2. Using this fact, here is a more clever way to accomplish
the exponentiation task, using the names (ˆ!) and ff for our functions to
distinguish them from the previous versions:

(ˆ!) :: Integer → Integer → Integer
x ˆ! n | n < 0 = error "negative exponent"

| otherwise = ff x n
where ff x n | n == 0 = 1

| even n = ff (x ∗ x ) (n ‘quot ‘ 2)
| otherwise = x ∗ ff x (n − 1)

Details: quot is Haskell’s quotient operator, which returns the integer quotient

of the first argument divided by the second, rounded toward zero.

You should convince yourself that, intuitively at least, this version of
exponentiation is not only correct, but also more efficient. More precisely,
(ˆ) executes a number of steps proportional to n, whereas (ˆ!) executes a
number of steps proportional to the log2 of n. The Standard Prelude defines
(ˆ) similarly to the way in which (ˆ!) is defined here.

Since intuition is not always reliable, let’s prove that this version is
equivalent to the old. That is, we wish to prove that xˆn = x ˆ! n for all x
and n.

A quick look at the two definitions reveals that what we really need
to prove is that f x n = ff x n, from which it follows immediately that
xˆn = x ˆ! n. We do this by induction on n, beginning with the base case
n = 0:

f x 0⇒ 1⇒ ff x 0

so the base case holds trivially. The induction step, however, is considerably
more complicated. We must consider two cases: n + 1 is either even, or it
is odd. If it is odd, we can show that:
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f x (n + 1)
⇒ x ∗ f x n
⇒ x ∗ ff x n
⇒ ff x (n + 1)

and we are done (note the use of the induction hypothesis in the second
step).

If n + 1 is even, we might try proceeding in a similar way:

f x (n + 1)
⇒ x ∗ f x n
⇒ x ∗ ff x n

But now what shall we do? Since n is odd, we might try unfolding the call
to ff :

x ∗ ff x n
⇒ x ∗ (x ∗ ff x (n − 1))

but this does not seem to be getting us anywhere. Furthermore, folding the
call to ff (as we did in the odd case) would involve doubling n and taking
the square root of x , neither of which seems like a good idea!

We could also try going in the other direction:

ff x (n + 1)
⇒ ff (x ∗ x ) ((n + 1) ‘quot ‘ 2)
⇒ f (x ∗ x ) ((n + 1) ‘quot ‘ 2)

The use of the induction hypothesis in the second step needs to be justified,
because the first argument to f has changed from x to x ∗ x . But recall
that the induction hypothesis states that for all values x , and all natural
numbers up to n, f x n is the same as ff x n. So this is OK.

But even allowing this, we seem to be stuck again!

Instead of pushing this line of reasoning further, let’s pursue a different
tact based on the (valid) assumption that if m is even, then:

m = m ‘quot ‘ 2 +m ‘quot ‘ 2

Let’s use this fact together with the property that we proved in the last
section:

f x (n + 1)
⇒ f x ((n + 1) ‘quot ‘ 2 + (n + 1) ‘quot ‘ 2)
⇒ f x ((n + 1) ‘quot ‘ 2) ∗ f x ((n + 1) ‘quot ‘ 2)
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Base case (n = 0):
f x 0 ∗ f x 0
⇒ 1 ∗ 1
⇒ 1
⇒ f (x ∗ x ) 0

Induction step (n + 1):
f x (n + 1) ∗ f x (n + 1)
⇒ (x ∗ f x n) ∗ (x ∗ f x n)
⇒ (x ∗ x ) ∗ (f x n ∗ f x n)
⇒ (x ∗ x ) ∗ f (x ∗ x ) n
⇒ f (x ∗ x ) (n + 1)

Figure 10.3: Proof that f x n ∗ f x n = f (x ∗ x ) n.

Next, as with the proof in the last section involving reverse, let’s make an
assumption about a property that will help us along. Specifically, what if
we could prove that f x n ∗ f x n is equal to f (x ∗ x ) n? If so, we could
proceed as follows:

f x ((n + 1) ‘quot ‘ 2) ∗ f x ((n + 1) ‘quot ‘ 2)
⇒ f (x ∗ x ) ((n + 1) ‘quot ‘ 2)
⇒ ff (x ∗ x ) ((n + 1) ‘quot ‘ 2)
⇒ ff x (n + 1)

and we are finally done. Note the use of the induction hypothesis in the
second step, as justified earlier. The proof of the auxiliary property is not
difficult, but also requires induction; it is shown in Figure 10.3.

Aside from improving efficiency, one of the pleasant outcomes of proving
that (ˆ) and (ˆ!) are equivalent is that anything that we prove about one
function will be true for the other. For example, the validity of the property
that we proved earlier:

xˆ(n +m) = xˆn ∗ xˆm

immediately implies the validity of:

x ˆ! (n +m) = x ˆ! n ∗ x ˆ!m
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Although (ˆ!) is more efficient than (ˆ), it is also more complicated, so it
makes sense to try proving new properties for (ˆ), since the proofs will likely
be easier.

The moral of this story is that you should not throw away old code that
is simpler but less efficient than a newer version. That old code can serve
at least two good purposes: First, if it is simpler, it is likely to be easier
to understand, and thus serves a useful role in documenting your effort.
Second, as we have just discussed, if it is provably equivalent to the new
code, then it can be used to simplify the task of proving properties about
the new code.

Exercise 10.8 The function (ˆ!) can be made more efficient by noting that
in the last line of the definition of ff , n is odd, and therefore n − 1 must
be even, so the test for n being even on the next recursive call could be
avoided. Redefine (ˆ!) so that it avoids this (minor) inefficiency.

Exercise 10.9 Consider this definition of the factorial function:3

fac1 :: Integer → Integer
fac1 0 = 1
fac1 n = n ∗ fac1 (n − 1)

and this alternative definition that uses an “accumulator:”

fac2 :: Integer → Integer
fac2 n = fac′ n 1

where fac′ 0 acc = acc
fac′ n acc = fac′ (n − 1) (n ∗ acc)

Prove that fac1 = fac2.

3The factorial function is defined mathematically as:

factorial(n) =

{

1 if n = 0
n ∗ factorial(n− 1) otherwise



Chapter 11

An Algebra of Music

In this chapter we will explore a number of properties of the Music data
type and functions defined on it, properties that collectively form an algebra
of music [Hud04]. With this algebra we can reason about, transform, and
optimize computer music programs in a meaning preserving way.

11.1 Musical Equivalance

Suppose we have two values m1 ::Music Pitch and m2 ::Music Pitch, and we
want to know if they are equal. If we treat them simply as Haskell values,
we could easily write a function that compares their structures recursively
to see if they are the same at every level, all the way down to the Primitive
rests and notes. This is in fact what the Haskell function (==) does. For
example, if:

m1 = c 4 en :+: d 4 qn
m2 = revM (revM m1)

Then m1 == m2 is True.

Unfortunately, as we saw in the last chapter, if we reverse a parallel
composition, things do not work out as well. For example:

revM (revM (c 4 en :=: d 4 qn))
⇒ (rest 0 :+: c 4 en :+: rest en) :=: d 4 qn

In addition, as we discussed briefly in Chapter 1, there are musical prop-
erties for which standard Haskell equivalence is insufficient to capture. For
example, we would expect the following two musical values to sound the
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same, regardless of the actual values of m1, m2, and m3:

(m1 :+:m2) :+:m3

m1 :+: (m2 :+:m3)

In other words, we expect the operator (:+:) to be associative.

The problem is that, as data structures, these two values are not equal
in general, in fact there are no finite values that can be assigned to m1, m2,
and m3 to make them equal.1

The obvious way out of this dilemma is to define a new notion of equality
that captures the fact that the performances are the same—i.e. if two things
sound the same, they must be musically equivalent. And thus we define a
formal notion of musical equivalence:

Definition: Two musical values m1 and m2 are equivalent, written
m1 ≡ m2, if and only if:

(∀pm, c) perf pm c m1 = perf pm c m2

We will study a number of properties in this chapter that capture musi-
cal equivalences, similar in spirit to the associativity of (:+:) above. Each of
them can be thought of as an axiom, and the set of valid axioms collectively
forms an algebra of music. By proving the validity of each axiom we not
only confirm our intuitions about how music is interpreted, but also gain
confidence that our perform function actually does the right thing. Fur-
thermore, with these axioms in hand, we can transform musical values in
meaning-preserving ways.

Speaking of the perform function, recall from Chapter 8 that we defined
two versions of perform , and the definition above uses the function perf ,
which includes the duration of a musical value in its result. The following
Lemma captures the connection between these functions:

Lemma 11.1.1 For all pm , c, and m:

perf pm c m = (perform pm c m, dur m ∗ cDur c)

where perform is the function defined in Figure 8.1.

To see the importance of including duration in the definition of equiv-
alence, we first note that if two musical values are equivalent, we should

1If m1 = m1 :+:m2 and m3 = m2 :+:m3 then the two expressions are equal, but these
are infinite values that cannot be reversed or even performed.
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be able to substitute one for the other in any valid musical context. But
if duration is not taken into account, then all rests are equivalent (because
their performances are just the empty list). This means that, for example,
m1 :+: rest 1 :+:m2 is equivalent to m1 :+: rest 2 :+:m2, which is surely not
what we want.2

Note that we could have defined perf as above, i.e. in terms of perform
and dur , but as mentioned in Section 8.1 it would have been computationally
inefficient to do so. On the other hand, if the Lemma above is true, then
our proofs might be simpler if we first proved the property using perform ,
and then using dur . That is, to prove m1 ≡ m2 we need to prove:

perf pm c m1 = perf pm c m2

Instead of doing this directly using the definition of perf , we could instead
prove both of the following:

perform pm c m1 = perform pm c m2

dur m1 = dur m2

11.1.1 Literal Player

The only problem with this strategy for defining musical equivalence is that
the notion of a player can create situations where certain properties that we
would like to hold, in fact do not. After all, a player may interpret a note or
phrase in whatever way it (or he or she) may desire. For example, it seems
that this property should hold:

tempo 1 m ≡ m

However, a certain (rather perverse) player might interpret anything tagged
with a Tempo modifier as an empty performance—in which case the above
property will fail! To solve this problem, we assume that...

11.2 Some Simple Axioms

Let’s look at a few simple axioms, and see how we can prove each of them
using the proof techniques that we have developed so far.

(Note: In the remainder of this chapter we will use the functions tempo r
and trans p to represent their unfolded versions, Modify (Tempo r) and

2A more striking example of this point is John Cage’s composition 4’33”, which consists
basically of four minutes and thirty-three seconds of silence [].
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Modify (Transpose t), respectively. In the proofs we will not bother with
the intermediate steps of unfolding these functions.)

Here is the first axiom that we will consider:

Axiom 11.2.1 For any r1, r2, and m:

tempo r1 (tempo r2 m) ≡ tempo (r1 ∗ r2) m

In other words, tempo scaling is multiplicative.

We can prove this by calculation, starting with the definition of musical
equivalence. For clarity we will first prove the property for perform , and
then for dur , as suggested in the last section:

let dt = cDur c

perform pm c (tempo r1 (tempo r2 m))
⇒ {unfold perform }
perform pm (c {cDur = dt /r1}) (tempo r2 m)
⇒ {unfold perform }
perform pm (c {cDur = (dt /r1)/r2}) m
⇒ {arithmetic }
perform pm (c {cDur = dt /(r1 ∗ r2)}) m
⇒ {fold perform }
perform pm c (tempo (r1 ∗ r2) m)

dur (tempo r1 (tempo r2 m))
⇒ {unfold dur }
dur (tempo r2 m)/r1
⇒ {unfold dur }
(dur m/r2)/r1
⇒ {arithmetic }
dur m/(r1 ∗ r2)
⇒ {fold dur }
dur (tempo (r1 ∗ r2) m)

Here is another useful axiom and its proof:

Axiom 11.2.2 For any r , m1, and m2:

tempo r (m1 :+:m2) ≡ tempo r m1 :+: tempo r m2

In other words, tempo scaling distributes over sequential composition.

Proof:
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let t = cTime c; dt = cDur c
t1 = t + dur m1 ∗ (dt /r)
t2 = t + (dur m1/r) ∗ dt
t3 = t + dur (tempo r m1) ∗ dt

perform pm c (tempo r (m1 :+:m2))
⇒ {unfold perform }
perform pm (c {cDur = dt /r }) (m1 :+:m2)
⇒ {unfold perform }
perform pm (c {cDur = dt /r }) m1

++ perform pm (c {cTime = t1, cDur = dt /r }) m2

⇒ {fold perform }
perform pm c (tempo r m1)

++ perform pm (c {cTime = t1}) (tempo r m2)
⇒ {arithmetic }
perform pm c (tempo r m1)

++ perform pm (c {cTime = t2}) (tempo r m2)
⇒ {fold dur }
perform pm c (tempo r m1)

++ perform pm (c {cTime = t3 }) (tempo r m2)
⇒ {fold perform }
perform pm c (tempo r m1 :+: tempo r m2)

dur (tempo r (m1 :+:m2))
⇒ dur (m1 :+:m2)/r
⇒ (dur m1 + dur m2)/r
⇒ dur m1/r + dur m2/r
⇒ dur (tempo r m1) + dur (tempo r m2)
⇒ dur (tempo r m1 :+: tempo r m2)

An even simpler axiom is given by:

Axiom 11.2.3 For any m, tempo 1 m ≡ m.

In other words, unit tempo scaling is the identity function for type Music.

Proof:

let dt = cDur c

perform pm c (tempo 1) m)
⇒ {unfold perform }
perform pm (c {cDur = dt /1}) m
⇒ {arithmetic }
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perform pm c m

dur (tempo 1) m)
⇒ dur m/1
⇒ dur m

Note that the above three proofs, being used to establish axioms, all
involve the definitions of perform and dur . In contrast, we can also establish
theorems whose proofs involve only the axioms. For example, Axioms 1, 2,
and 3 are all needed to prove the following:

Theorem 11.2.1 For any r , m1, and m2:

tempo r m1 :+:m2 ≡ tempo r (m1 :+: tempo (1/r) m2)

Proof:

tempo r m1 :+:m2

⇒ {Axiom 3}
tempo r m1 :+: tempo 1 m2

⇒ {arithmetic }
tempo r m1 :+: tempo (r ∗ (1/r)) m2

⇒ {Axiom 1}
tempo r m1 :+: tempo r (tempo (1/r) m2)
⇒ {Axiom 2}
tempo r (m1 :+: tempo (1/r) m2)

11.3 The Fundamental Axiom Set

There are many other useful axioms, but we do not have room to include all
of their proofs here. They are listed below, which include the axioms from
the previous section as special cases, and the proofs are left as exercises.

Axiom 11.3.1 Tempo is multiplicative and Transpose is additive. That is,
for any r1, r2, p1, p2, and m:

tempo r1 (tempo r2 m) ≡ tempo (r1 ∗ r2) m
trans p1 (trans p2 m) ≡ trans (p1 + p2) m

Axiom 11.3.2 Function composition is commutative with respect to both
tempo scaling and transposition. That is, for any r1, r2, p1 and p2:
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tempo r1 ◦ tempo r2 ≡ tempo r2 ◦ tempo r1

trans p1 ◦ trans p2 ≡ trans p2 ◦ trans p1

tempo r1 ◦ trans p1 ≡ trans p1 ◦ tempo r1

Axiom 11.3.3 Tempo scaling and transposition are distributive over both
sequential and parallel composition. That is, for any r , p, m1, and m2:

tempo r (m1 :+:m2) ≡ tempo r m1 :+: tempo r m2

tempo r (m1 :=:m2) ≡ tempo r m1 :=: tempo r m2

trans p (m1 :+:m2) ≡ trans p m1 :+: trans p m2

trans p (m1 :=:m2) ≡ trans p m1 :=: trans p m2

Axiom 11.3.4 Sequential and parallel composition are associative. That
is, for any m0, m1, and m2:

m0 :+: (m1 :+:m2) ≡ (m0 :+:m1) :+:m2

m0 :=: (m1 :=:m2) ≡ (m0 :=:m1) :=:m2

Axiom 11.3.5 Parallel composition is commutative. That is, for any m0

and m1:

m0 :=:m1 ≡ m1 :=:m0

Axiom 11.3.6 rest 0 is a unit for tempo and trans , and a zero for sequential
and parallel composition. That is, for any r , p, and m:

tempo r (rest 0) ≡ rest 0

trans p (rest 0) ≡ rest 0

m :+: rest 0 ≡ m ≡ rest 0 :+:m

m :=: rest 0 ≡ m ≡ rest 0 :=:m

Axiom 11.3.7 A rest can be used to “pad” a parallel composition. That
is, for any m1, m2, such that diff = dur m1>dur m2 > 0, and any d 6 diff :

m1 :=:m2 ≡ m1 :=: (m2 :+: rest d)

Axiom 11.3.8 There is a duality between (:+:) and (:=:), namely that, for
any m0, m1, m2, and m3 such that dur m0 = dur m2:

(m0 :+:m1) :=: (m2 :+:m3) ≡ (m0 :=:m2) :+: (m1 :=:m3)
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Exercise 11.1 Prove Lemma 11.1.1.

Exercise 11.2 Establish the validity of each of the above axioms.

Exercise 11.3 Recall the polyphonic and contrapuntal melodies mel1 and
mel2 from Chapter 1. Prove that mel1 ≡ mel2.

11.4 An Algebraic Semantics

Discuss formal semantics. Denotational, operational (relate to “proof by
calculation”), and algebraic.

Soundness and Completeness.

[Hud04]

11.5 Other Musical Properties

Aside from the axioms discussed so far, there are many other properties of
Music values and its various operators, just as we saw in Chapter 10 for
lists. For example, this property of map taken from Figure 10.1:

map (f ◦ g) = map f ◦map g

suggests and analogous property for mMap:

map (f ◦ g) = map f ◦map g

Not all of the properties in Figures 10.1 and 10.2 have analogous musical
renditions, and there are also others that are special only to Music values.
Figure 11.1 summarizes the most important of these properties, including
the one above. Note that some of the properties are expressed as strict
equality—that is, the left-hand and right-hand sides are equivalent as Haskell
values. But others are expressed using musical equivalence—that is, using
(≡). We leave the proofs of all these properties as an exercise.

Exercise 11.4 Prove that timesM a m :+: timesM b m ≡ timesM (a +
b) m.

Exercise 11.5 Prove as many of the axioms from Figure 11.1 as you can.
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Properties of mMap:

mMap (λx → x ) = λx → x
mMap (f ◦ g) = mMap f ◦mMap g
mMap f ◦ dropM d = dropM d ◦mMap f
mMap f ◦ takeM d = takeM d ◦mMap f

Properties of takeM and dropM :

For all non-negative d1 and d2:
takeM d1 ◦ takeM d2 = takeM (min d1 d2)
dropM d1 ◦ dropM d2 = dropM (d1 + d2)
takeM d1 ◦ dropM d2 = dropM d1 ◦ takeM (d1 + d2)

For all non-negative d1 and d2 such that d2 > d1:
dropM d1 ◦ takeM d2 = takeM (d2 − d1) ◦ dropM d1

Properties of revM :

For all finite-duration m:
revM (revM m) ≡ m
revM (takeM d m) ≡ dropM (dur m − d) (revM m)
revM (dropM d m) ≡ takeM (dur m − d) (revM m)
takeM d (revM m) ≡ revM (dropM (dur m − d) m)
dropM d (revM m) ≡ revM (takeM (dur m − d) m)

Properties of dur :

dur (revM m) = dur m
dur (takeM d m) = min d (dur m)
dur (dropM d m) = max 0 (dur m − d)

Figure 11.1: Useful Properties of Other Musical Functions



Chapter 12

Musical L-Systems and
Generative Grammars

module Euterpea.Examples .LSystems where

import Euterpea
import Data.List hiding (transpose)
import System .Random

12.1 Generative Grammars

A grammar describes a formal language. One can either design a recognizer
(or parser) for that language, or design a generator that generates sentences
in that language. We are interested in using grammars to generate music,
and thus we are only interested in generative grammars.

A generative grammar is a four-tuple (N,T, n, P ), where:

• N is the set of non-terminal symbols.

• T is the set of terminal symbols.

• n is the initial symbol.

• P is a set of production rules, where each production rule is a pair
(X,Y ), often written X → Y . X and Y are sentences (or sentential
forms) formed over the alphabet N ∪ T , and X contains at least one
non-terminal.
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A Lindenmayer system, or L-system, is an example of a generative gram-
mer, but is different in two ways:

1. The sequence of sentences is as important as the individual sentences,
and

2. A new sentence is generated from the previous one by applying as many
productions as possible on each step—a kind of “parallel production.”

Lindenmayer was a biologist and mathematician, and he used L-systems
to describe the growth of certain biological organisms (such as plants, and
in particular algae).

We will limit our discussion to L-systems that have the following addi-
tional characteristics:

1. They are context-free: the left-hand side of each production (i.e. X
above) is a single non-terminal.

2. No distinction is made between terminals and non-terminals (with no
loss of expressive power—why?).

We will consider both deterministic and non-deterministic grammars.
A deterministic grammar has exactly one production corresponding to each
non-terminal symbol in the alphabet, whereas a non-deterministic grammar
may have more than one, and thus we will need some way to choose between
them.

12.1.1 A Simple Implementation

A framework for simple, context-free, deterministic grammars can be de-
signed in Haskell as follows. We represent the set of productions as a list of
symbol/list-of-symbol pairs:

data DetGrammar a = DetGrammar a -- start symbol
[(a, [a ])] -- productions

deriving Show

To generate a succession of “sentential forms,” we need to define a function
that, given a grammar, returns a list of lists of symbols:

detGenerate :: Eq a ⇒ DetGrammar a → [ [a ] ]
detGenerate (DetGrammar st ps) = iterate (concatMap f ) [st ]

where f a = maybe [a ] id (lookup a ps)
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Details: maybe is a convenient function for conditionally giving a result based
on the structure of a value of type Maybe a. It is defined in the Standard Prelude
as:

maybe :: b → (a → b)→ Maybe a → b
maybe f (Just x ) = f x
maybe z Nothing = z

lookup ::Eq a ⇒ a → [(a, b)] → Maybe b is a convenient function for finding the
value associated with a given key in an association list. For example:

lookup ’b’ [(’a’, 0), (’b’, 1), (’c’, 2)]⇒ Just 1
lookup ’d’ [(’a’, 0), (’b’, 1), (’c’, 2)]⇒ Nothing

Note that we expand each symbol “in parallel” at each step, using
concatMap. The repetition of this process at each step is achieved using
iterate . Note also that a list of productions is essentially an association list,
and thus the Data.List library function lookup works quite well in finding
the production rule that we seek. Finally, note once again how the use of
higher-order functions makes this definition concise yet efficient.

As an example of the use of this simple program, a Lindenmayer grammer
for red algae (taken from []) is given by:

redAlgae = DetGrammar ’a’

[(’a’, "b|c"), (’b’, "b"), (’c’, "b|d"),
(’d’, "e\\d"), (’e’, "f"), (’f’, "g"),
(’g’, "h(a)"), (’h’, "h"), (’|’, "|"),
(’(’, "("), (’)’, ")"), (’/’, "\\"),
(’\\’, "/")
]

Details: Recall that ’\\’ is how the backslash character is written in Haskell,

because a single backslash is the “escape” character for writing special characters

such as newline (’\n’), tab (’\t’), and so on. Since the backslash is used in this

way, it also is a special character, and must be escaped using itself, i.e. ’\\’.

Then detGenerate redAlgae gives us the result that we want—or, to make
it look nicer, we could do:

t n g = sequence (map putStrLn (take n (detGenerate g)))
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For example, t 10 redAlgae yields:

a

b|c

b|b|d

b|b|e\d

b|b|f/e\d

b|b|g\f/e\d

b|b|h(a)/g\f/e\d

b|b|h(b|c)\h(a)/g\f/e\d

b|b|h(b|b|d)/h(b|c)\h(a)/g\f/e\d

b|b|h(b|b|e\d)\h(b|b|d)/h(b|c)\h(a)/g\f/e\d

Exercise 12.1 Define a function strToMusic::AbsPitch → Dur → String →
Music Pitch that interprets the strings generated by redAlgae as music.
Specifically, strToMusic ap d str interprets the string str in the following
way:

1. Characters ’a’ through ’h’ are interpreted as notes, each with dura-
tion d and absolute pitches ap, ap + 2, ap + 4, ap + 5, ap + 7, ap +9,
ap + 11, and ap + 12, respectively (i.e. a major scale).

2. ’|’ is interpreted as a no-op.

3. ’/’ and ’\\’ are both interpreted as a rest of length d .

4. ’(’ is interpreted as a transposition by 5 semitones (a perfect fourth).

5. ’)’ is interpreted as a transposition by -5 semitones.

Exercise 12.2 Design a function testDet :: Grammar a → Bool such that
testDet g is True if g has exactly one rule for each of its symbols; i.e. it is
deterministic. Then modify the generate function above so that it returns
an error if a grammer not satisfying this constraint is given as argument.

12.1.2 A More General Implementation

The design given in the last section only captures deterministic context-free
grammars, and the generator considers only parallel productions that are
charactersitic of L-Systems.
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We would also like to consider non-deterministic grammars, where a
user can specify the probability that a particular rule is selected, as well as
possibly non-context free (i.e. context sensitive) grammars. Thus we will
represent a generative grammar a bit more abstractly, as a data structure
that has a starting sentence in an (implicit, polymorphic) alphabet, and a
list of production rules:

data Grammar a = Grammar a -- start sentence
(Rules a) -- production rules

deriving Show

The production rules are instructions for converting sentences in the alpha-
bet to other sentences in the alphabet. A rule set is either a set of uniformly
distributed rules (meaning that those with the same left-hand side have an
equal probability of being chosen), or a set of stochastic rules (each of which
is paired with a probabilty). A specific rule consists of a left-hand side and
a right-hand side.

data Rules a = Uni [Rule a ]
| Sto [(Rule a,Prob)]

deriving (Eq ,Ord ,Show )

data Rule a = Rule { lhs :: a, rhs :: a }
deriving (Eq ,Ord ,Show )

type Prob = Double

One of the key sub-problems that we will have to solve is how to prob-
abilistically select a rule from a set of rules, and use that rule to expand a
non-terminal. We define the following type to capture this process:

type ReplFun a = [[(Rule a,Prob)]]→ (a, [Rand ])→ (a, [Rand ])
type Rand = Double

The idea here is that a function f ::ReplFun a is such that f rules (s, rands )
will return a new sentence s ′ in which each symbol in s has been replaced
according to some rule in rules (which are grouped by common left-hand
side). Each rule is chosen probabilitically based on the random numbers in
rands , and thus the result also includes a new list of random numbers to
account for those “consumed” by the replacement process.

With such a function in hand, we can now define a function that, given
a grammar, generates an infinite list of the sentences produced by this re-
placement process. Because the process is non-deterministic, we also pass a
seed (an integer) to generate the initial pseudo-random number sequence to
give us repeatable results.
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gen ::Ord a ⇒ ReplFun a → Grammar a → Int → [a ]
gen f (Grammar s rules) seed =

let Sto newRules = toStoRules rules
rands = randomRs (0.0, 1.0) (mkStdGen seed)

in if checkProbs newRules
then generate f newRules (s, rands )
else (error "Stochastic rule-set is malformed.")

toStoRules converts a list of uniformly distributed rules to an equivalent
list of stochastic rules. Each set of uniform rules with the same LHS is
converted to a set of stochastic rules in which the probability of each rule is
one divided by the number of uniform rules.

toStoRules :: (Ord a,Eq a)⇒ Rules a → Rules a
toStoRules (Sto rs) = Sto rs
toStoRules (Uni rs) =

let rs ′ = groupBy (λr1 r2 → lhs r1 == lhs r2) (sort rs)
in Sto (concatMap insertProb rs ′)

insertProb :: [a ]→ [(a,Prob)]
insertProb rules = let prb = 1.0/fromIntegral (length rules)

in zip rules (repeat prb)

Details: groupBy :: (a → a → Bool ) → [a ] → [ [a ] ] is a Data.List library

function that behaves as follows: groupBy eqfn xs returns a list of lists such that

all elements in each sublist are “equal” in the sense defined by eqfn.

checkProbs takes a list of production rules and checks whether, for every
rule with the same LHS, the probabilities sum to one (plus or minus some
epsilon, currenty set to 0.001).

checkProbs :: (Ord a,Eq a)⇒ [(Rule a,Prob)]→ Bool
checkProbs rs = and (map checkSum (groupBy sameLHS (sort rs)))

eps = 0.001

checkSum :: [(Rule a,Prob)]→ Bool
checkSum rules = let mySum = sum (map snd rules)

in abs (1.0−mySum) 6 eps

sameLHS :: Eq a ⇒ (Rule a,Prob)→ (Rule a,Prob)→ Bool
sameLHS (r1, f1) (r2, f2) = lhs r1 == lhs r2
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generate takes a replacement function, a list of rules, a starting sentence,
and a source of random numbers. It returns an infinite list of sentences.

generate :: Eq a ⇒
ReplFun a → [(Rule a,Prob)]→ (a, [Rand ])→ [a ]

generate f rules xs =
let newRules = map probDist (groupBy sameLHS rules)

probDist rrs = let (rs , ps) = unzip rrs
in zip rs (tail (scanl (+) 0 ps))

in map fst (iterate (f newRules) xs)

A key aspect of the generate algorithm above is to compute the proba-
bility density of each successive rule, which is basically the sum of its prob-
ability plus the probabilities of all rules that precede it.

12.2 An L-System Grammar for Music

The previous section gave a generative framework for a generic grammar.
For a musical L-system we will define a specific grammar, whose sentences
are defined as follows. A musical L-system sentence is either:

• A non-terminal symbol N a.

• A sequential composition s1 :+ s2.

• A functional composition s1 :. s2.

• The symbol Id , which will eventually be interpeted as the identity
function.

We capture this in the LSys data type:

data LSys a = N a
| LSys a :+ LSys a
| LSys a :. LSys a
| Id

deriving (Eq ,Ord ,Show )

The idea here is that sentences generated from this grammar are relative
to a starting note, and thus the above constructions will be interpreted as
functions that take that starting note as an argument. This will all become
clear shortly, but first we need to define a replacement function for this
grammar.
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We will treat (:+) and (:.) as binary branches, and recursively traverse
each of their arguments. We will treat Id as a constant that never gets
replaced. Most importantly, each non-terminal of the form N x could each
be the left-hand side of a rule, so we call the function getNewRHS to generate
the replacement term for it.

replFun :: Eq a ⇒ ReplFun (LSys a)
replFun rules (s, rands ) =

case s of
a :+ b → let (a ′, rands ′) = replFun rules (a, rands)

(b ′, rands ′′) = replFun rules (b, rands ′)
in (a ′ :+ b ′, rands ′′)

a :. b → let (a ′, rands ′) = replFun rules (a, rands)
(b ′, rands ′′) = replFun rules (b, rands ′)

in (a ′ :. b ′, rands ′′)
Id → (Id , rands)
N x → (getNewRHS rules (N x ) (head rands), tail rands)

getNewRHS is defined as:

getNewRHS :: Eq a ⇒ [ [(Rule a,Prob)]]→ a → Rand → a
getNewRHS rrs ls rand =

let loop ((r , p) : rs) = if rand 6 p then rhs r else loop rs
loop [ ] = error "getNewRHS anomaly"

in case (find (λ((r , p): )→ lhs r == ls) rrs) of
Just rs → loop rs
Nothing → error "No rule match"

Details: find :: (a → Bool ) → [a ] → Maybe a is another Data.List function

that returns the first element of a list that satisfies a predicate, or Nothing if there

is no such element.

12.2.1 Examples

The final step is to interpret the resulting sentence (i.e. a value of type
LSys a) as music. As mentioned earlier, the intent of the LSys design is
that a value is interpreted as a function that is applied to a single note
(or, more generally, a single Music value). The specific constructors are
interpreted as follows:
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type IR a b = [(a,Music b → Music b)] -- “interpetation rules”

interpret :: (Eq a)⇒ LSys a → IR a b → Music b → Music b
interpret (a :. b) r m = interpret a r (interpret b r m)
interpret (a :+ b) r m = interpret a r m :+: interpret b r m
interpret Id r m = m
interpret (N x ) r m = case (lookup x r) of

Just f → f m
Nothing → error "No interpetation rule"

For example, we could define the following interpretation rules:

data LFun = Inc | Dec | Same
deriving (Eq ,Ord ,Show )

ir :: IR LFun Pitch
ir = [(Inc, transpose 1),

(Dec, transpose (−1)),
(Same, id)]

inc, dec, same :: LSys LFun
inc = N Inc
dec = N Dec
same = N Same

In other words, inc transposes the music up by one semitone, dec transposes
it down by a semitone, and same does nothing.

Now let’s build an actual grammar. sc increments a note followed by its
decrement—the two notes are one whole tone apart:

sc = inc :+ dec

Now let’s define a bunch of rules as follows:

r1a = Rule inc (sc :. sc)
r1b = Rule inc sc
r2a = Rule dec (sc :. sc)
r2b = Rule dec sc
r3a = Rule same inc
r3b = Rule same dec
r3c = Rule same same

and the corresponding grammar:

g1 = Grammar same (Uni [r1b, r1a , r2b, r2a , r3a , r3b ])

Finally, we generate a sentence at some particular level, and interpret it
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as music:

t1 n = instrument Vibraphone $
interpret (gen replFun g1 42 !! n) ir (c 5 tn)

Try “play (t1 3)” or “play (t1 4)” to hear the result.

Exercise 12.3 Play with the L-System grammar defined above. Change
the production rules. Add probabilities to the rules, i.e. change it into a Sto
grammar. Change the random number seed. Change the depth of recursion.
And also try changing the “musical seed” (i.e. the note c 5 tn).

Exercise 12.4 Define a new L-System structure. In particular, (a) define
a new version of LSys (for example, add a parallel constructor) and its asso-
ciated interpretation, and/or (b) define a new version of LFun (perhaps add
something to control the volume) and its associated interpretation. Then
define some grammars with the new design to generate interesting music.



Chapter 13

Random Numbers,
Probability Distributions,
and Markov Chains

module Euterpea.Examples .RandomMusic where

import Euterpea

import System .Random
import System .Random .Distributions
import qualified Data.MarkovChain as M

The use of randomness in composition can be justified by the somewhat
random, exploratory nature of the creative mind, and indeed it has been
used in computer music composition for many years. In this chapter we
will explore several sources of random numbers and how to use them in
generating simple melodies. With this foundation you will hopefully be able
to use randomness in more sophisticated ways in your compositions. Music
relying at least to some degree on randomness is said to be stochastic, or
aleatoric.

13.1 Random Numbers

This section describes the basic functionality of Haskell’s System.Random
module, which is a library for random numbers. The library presents a
fairly abstract interface that is structured in two layers of type classes: one

201



CHAPTER 13. RANDOM NUMBERS ... AND MARKOV CHAINS 202

that captures the notion of a random generator, and one for using a random
generator to create random sequences.

We can create a random number generator using the built-in mkStdGen
function:

mkStdGen :: Int → StdGen

which takes an Int seed as argument, and returns a “standard generator” of
type StdGen . For example, we can define:

sGen :: StdGen
sGen = mkStdGen 42

We will use this single random generator quite extensively in the remainder
of this chapter.

StdGen is an instance of Show , and thus its values can be printed—but
they appear in a rather strange way, basically as two integers. Try typing
sGen to the GHCi prompt.

More importantly, StdGen is an instance of the RandomGen class:

class RandomGen g where
genRange :: g → (Int , Int)
next :: g → (Int , g)
split :: g → (g , g)

The reason that Ints are used here is that essentially all pseudo-random
number generator algorithms are based on a fixed-precision binary number,
such as Int . We will see later how this can be coerced into other number
types.

For now, try applying the operators in the above class to the sGen value
above. The next function is particularly important, as it generates the next
random number in a sequence as well as a new random number generator,
which in turn can be used to generate the next number, and so on. It should
be clear that we can then create an infinite list of random Ints like this:

randInts :: StdGen → [Int ]
randInts g = let (x , g ′) = next g

in x : randInts g ′

Look at the value take 10 (randInts sGen) to see a sample output.

To support other number types, the Random library defines this type
class:

class Random a where
randomR :: RandomGen g ⇒ (a, a)→ g → (a, g)
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random :: RandomGen g ⇒ g → (a, g)

randomRs :: RandomGen g ⇒ (a, a)→ g → [a ]
randoms :: RandomGen g ⇒ g → [a ]

randomRIO :: (a, a)→ IO a
randomIO :: IO a

Built-in instances of Random are provided for Int , Integer , Float , Double,
Bool , and Char .

The set of operators in the Random class is rather daunting, so let’s
focus on just one of them for now, namely the third one, RandomRs , which
is also perhaps the most useful one. This function takes a random number
generator (such as sGen), along with a range of values, and generates an
infinite list of random numbers within the given range (the pair representing
the range is treated as a closed interval). Here are several examples of this
idea:

randFloats :: [Float ]
randFloats = randomRs (−1, 1) sGen

randIntegers :: [Integer ]
randIntegers = randomRs (0, 100) sGen

randString :: String
randString = randomRs (’a’, ’z’) sGen

Recall that a string is a list of characters, so we choose here to use the name
randString for our infinite list of characters. If you believe the story about
a monkey typing a novel, then you might believe that randString contains
something interesting to read.

So far we have used a seed to initialize our random number generators,
and this is good in the sense that it allows us to generate repeatable, and
therefore more easily testable, results. If instead you prefer a non-repeatable
result, in which you can think of the seed as being the time of day when
the program is executed, then you need to use a function that is in the IO
monad. The last two operators in the Random class serve this purpose. For
example, consider:

randIO :: IO Float
randIO = randomRIO (0, 1)

If you repeatedly type randIO at the GHCi prompt, it will return a different
random number every time. This is clearly not purely “functional,” and is
why it is in the IO monad. As another example:
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randIO ′ :: IO ()
randIO ′ = do r1 ← randomRIO (0, 1) :: IO Float

r2 ← randomRIO (0, 1) :: IO Float
print (r1 == r2)

will almost always return False , because the chance of two randomly gener-
ated floating point numbers being the same is exceedingly small. (The type
signature is needed to ensure that the value generated has an unambigous
type.)

Details: print ::Show a ⇒ a → IO () converts any showable value into a string,

and displays the result in the standard output area.

13.2 Probability Distributions

The random number generators described in the previous section are as-
sumed to be uniform, meaning that the probability of generating a number
within a given interval is the same everywhere in the range of the generator.
For example, in the case of Float (that purportedly represents continuous
real numbers), suppose we are generating numbers in the range 0 to 10.
Then we would expect the probability of a number appearing in the range
2.3-2.4 to be the same as the probability of a number appearing in the range
7.6-7.7, namely 0.01, or 1% (i.e. 0.1/10). In the case of Int (a discrete or
integral number type), we would expect the probability of generating a 5
to be the same as generating an 8. In both cases, we say that we have a
uniform distribution.

But we don’t always want a uniform distribution. In generating music, in
fact, it’s often the case that we want some kind of a non-uniform distribution.
Mathematically, the best way to describe a distribution is by plotting how
the probability changes over the range of values that it produces. In the
case of continuous numbers, this is called the probability density function,
which has the property that its integral over the full range of values is equal
to 1.

The System.Random .Distributions library provides a number of different
probability distributions, which are described below. Figure 13.1 shows the
probability density functions for each of othem.

Here is a list and brief description of each random number generator:
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Figure 13.1: Various Probability Density Functions
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linear Generates a linearly distributed random variable between 0 and 1.
The probability density function is given by:

f(x) =

{

2(1− x) if 0 6 x 6 1
0 otherwise

The type signature is:

linear :: (RandomGen g ,Floating a,Random a,Ord a)⇒
g → (a, g)

The mean value of the linear distribution is 1/3.

exponential Generates an exponentially distributed random variable given
a spread parameter λ. A larger spread increases the probability of
generating a small number. The mean of the distribution is 1/λ. The
range of the generated number is conceptually 0 to ∞, although the
chance of getting a very large number is very small. The probability
density function is given by:

f(x) = λe−λx

The type signature is:

exponential :: (RandomGen g ,Floating a,Random a)⇒
a → g → (a, g)

The first argument is the parameter λ.

bilateral exponential Generates a random number with a bilateral expo-
nential distribution. It is similar to exponential, but the mean of the
distribution is 0 and 50% of the results fall between −1/λ and 1/λ.
The probability density function is given by:

f(x) =
1

2
λe−λ|x|

The type signature is:

bilExp :: (Floating a,Ord a,Random a,RandomGen g)⇒
a → g → (a, g)

Gaussian Generates a random number with a Gaussian, also called normal,
distribution, given mathematically by:

f(x) =
1

σ
√
2π

e−
(x−µ)2

2σ2
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where σ is the standard deviation, and µ is the mean. The type signa-
ture is:

gaussian :: (Floating a,Random a,RandomGen g)⇒
a → a → g → (a, g)

The first argument is the standard deviation σ and the second is the
mean µ. Probabilistically, about 68.27% of the numbers in a Gaussian
distribution fall within ±σ of the mean; about 95.45% are within ±2σ,
and 99.73% are within ±3σ.

Cauchy Generates a Cauchy-distributed random variable. The distribu-
tion is symmetric with a mean of 0. The density function is given
by:

f(x) =
α

π(α2 + x2)

As with the Gaussian distribution, it is unbounded both above and
below the mean, but at its extremes it approaches 0 more slowly than
the Gaussian. The type signature is:

cauchy :: (Floating a,Random a,RandomGen g)⇒
a → g → (a, g)

The first argument corresponds to α above, and is called the density.

Poisson Generates a Poisson-distributed random variable. The Poisson
distribution is discrete, and generates only non-negative numbers. λ
is the mean of the distribution. If λ is an integer, the probability that
the result is j = λ− 1 is the same as that of j = λ. The probability of
generating the number j is given by:

P{X = j} = λj

j!
e−λ

The type signature is:

poisson :: (Num t ,Ord a,Floating a,Random a
RandomGen g)⇒
a → g → (t , g)

Custom Sometimes it is useful to define one’s own discrete probability dis-
tribution function, and to generate random numbers based on it. The
function frequency does this—given a list of weight-value pairs, it gen-
erates a value randomly picked from the list, weighting the probability
of choosing each value by the given weight.
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frequency :: (Floating w ,Ord w ,Random w ,RandomGen g)⇒
[(w , a)]→ g → (a, g)

13.2.1 Random Melodies and Random Walks

Note that each of the non-uniform distribution random number generators
described in the last section takes zero or more parameters as arguments,
along with a uniform random number generator, and returns a pair consist-
ing of the next random number and a new generator. In other words, the
tail end of each type signature has the form:

...→ g → (a, g)

where g is the type of the random number generator, and a is the type of
the next value generated.

Given such a function, we can generate an infinite sequence of random
numbers with the given distribution in a way similar to what we did earlier
for randInts . In fact the following function is defined in the Distributions
library to make this easy:

rands :: (RandomGen g ,Random a)⇒
(g → (a, g))→ g → [a ]

rands f g = x : rands f g ′ where (x , g ′) = f g

Let’s work through a few musical examples. One thing we will need to
do is convert a floating point number to an absolute pitch:

toAbsP1 :: Float → AbsPitch
toAbsP1 x = round (40 ∗ x + 30)

This function converts a number in the range 0 to 1 into an absolute pitch
in the range 30 to 70.

And as we have often done, we will also need to convert an absolute
pitch into a note, and a sequence of absolute pitches into a melody:

mkNote1 :: AbsPitch → Music Pitch
mkNote1 = note tn ◦ pitch
mkLine1 :: [AbsPitch ]→ Music Pitch
mkLine1 rands = line (take 32 (map mkNote1 rands))

With these functions in hand, we can now generate sequences of random
numbers with a variety of distributions, and convert each of them into a
melody. For example:
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-- uniform distribution
m1 ::Music Pitch
m1 = mkLine1 (randomRs (30, 70) sGen)

-- linear distribution
m2 ::Music Pitch
m2 = let rs1 = rands linear sGen

in mkLine1 (map toAbsP1 rs1 )

-- exponential distribution
m3 :: Float → Music Pitch
m3 lam = let rs1 = rands (exponential lam) sGen

in mkLine1 (map toAbsP1 rs1 )

-- Gaussian distribution
m4 :: Float → Float → Music Pitch
m4 sig mu = let rs1 = rands (gaussian sig mu) sGen

in mkLine1 (map toAbsP1 rs1 )

Exercise 13.1 Try playing each of the above melodies, and listen to the
musical differences. For lam , try values of 0.1, 1, 5, and 10. For mu, a value
of 0.5 will put the melody in the central part of the scale range—then try
values of 0.01, 0.05, and 0.1 for sig .

Exercise 13.2 Do the following:

• Try using some of the other probability distributions to generate a
melody.

• Instead of using a chromatic scale, try using a diatonic or pentatonic
scale.

• Try using randomness to control parameters other than pitch—in par-
ticular, duration and/or volume.

Another approach to generating a melody is sometimes called a random
walk. The idea is to start on a particular note, and treat the sequence of
random numbers as intervals, rather than as pitches. To prevent the melody
from wandering too far from the starting pitch, one should use a probability
distribution whose mean is zero. This comes for free with something like the
bilateral exponential, and is easily obtained with a distribution that takes
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the mean as a parameter (such as the Gaussian), but is also easily achieved
for other distributions by simply subtracting the mean. To see these two
situations, here are random melodic walks using first a Gaussian and then
an exponential distribution:

-- Gaussian distribution with mean set to 0
m5 :: Float → Music Pitch
m5 sig = let rs1 = rands (gaussian sig 0) sGen

in mkLine2 50 (map toAbsP2 rs1 )

-- exponential distribution with mean adjusted to 0
m6 :: Float → Music Pitch
m6 lam = let rs1 = rands (exponential lam) sGen

in mkLine2 50 (map (toAbsP2 ◦ subtract (1/lam)) rs1 )

toAbsP2 :: Float → AbsPitch
toAbsP2 x = round (5 ∗ x )
mkLine2 :: AbsPitch → [AbsPitch ]→ Music Pitch
mkLine2 start rands =

line (take 64 (map mkNote1 (scanl (+) start rands)))

Note that toAbsP2 does something reasonable to interpret a floating-point
number as an interval, and mkLine2 uses scanl to generate a “running sum”
that represents the melody line.

13.3 Markov Chains

Each number in the random number sequences that we have described thus
far is independent of any previous values in the sequence. This is like flip-
ping a coin—each flip has a 50% chance of being heads or tails, i.e. it is
independent of any previous flips, even if the last ten flips were all heads.

Sometimes, however, we would like the probability of a new choice to
depend upon some number of previous choices. This is called a conditional
probability. In a discrete system, if we look only at the previous value to help
determine the next value, then these conditional probabilities can be con-
veniently represented in a matrix. For example, if we are choosing between
the pitches C, D, E, and F , then Table 13.1 might represent the conditional
probabilities of each possible outcome. The previous pitch is found in the
left column—thus note that the sum of each row is 1.0. So, for example,
the probability of choosing a D given that the previous pitch was an E is
0.6, and the probability of an F occurring twice in succession is 0.2. The
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C D E F

C 0.4 0.2 0.2 0.2

D 0.3 0.2 0.0 0.5

E 0.1 0.6 0.1 0.2

F 0.2 0.3 0.3 0.2

Table 13.1: Second-Order Markov Chain

resulting stochastic system is called a Markov Chain.

This idea can of course be generalized to arbitrary numbers of previous
events, and in general an (n+1)-dimensional array can be used to store the
various conditional probabilities. The number of previous values observed
is called the order of the Markov Chain.

[TO DO: write the Haskell code to implement this]

13.3.1 Training Data

Instead of generating the conditional probability table ourselves, another
approach is to use training data from which the conditional probabilities
can be inferred. This is handy for music, because it means that we can
feed in a bunch of melodies that we like, including melodies written by the
masters, and use that as a stochastic basis for generating new melodies.

[TO DO: Give some pointers to the literatue, in particular David Cope’s
work.]

The Data.MarkovChain library provides this functionality through a
function called run, whose type signature is:

run :: (Ord a,RandomGen g)⇒
Int -- order of Markov Chain
→ [a ] -- training sequence (treated as circular list)
→ Int -- index to start within the training sequence
→ g -- random number generator
→ [a ]

The runMulti function is similar, except that it takes a list of training se-
quences as input, and returns a list of lists as its result, each being an in-
dependent random walk whose probabilities are based on the training data.
The following examples demonstrate how to use these functions.

-- some sample training sequences



CHAPTER 13. RANDOM NUMBERS ... AND MARKOV CHAINS 212

ps0, ps1, ps2 :: [Pitch ]
ps0 = [(C , 4), (D , 4), (E , 4)]
ps1 = [(C , 4), (D , 4), (E , 4), (F , 4), (G , 4), (A, 4), (B , 4)]
ps2 = [(C , 4), (E , 4), (G , 4), (E , 4), (F , 4), (A, 4), (G , 4), (E , 4),

(C , 4), (E , 4), (G , 4), (E , 4), (F , 4), (D , 4), (C , 4)]

-- functions to package up run and runMulti
mc ps n = mkLine3 (M .run n ps 0 (mkStdGen 42))
mcm pss n = mkLine3 (concat (M .runMulti n pss 0

(mkStdGen 42)))

-- music-making functions
mkNote3 :: Pitch → Music Pitch
mkNote3 = note tn

mkLine3 :: [Pitch ]→ Music Pitch
mkLine3 ps = line (take 64 (map mkNote3 ps))

Here are some things to try with the above definitions:

• mc ps0 0 will generate a completely random sequence, since it is a
“zeroth-order” Markov Chain that does not look at any previous out-
put.

• mc ps0 1 looks back one value, which is enough in the case of this
simple training sequence to generate an endless sequence of notes that
sounds just like the training data. Using any order higher than 1
generates the same result.

• mc ps1 1 also generates a result that sounds just like its training data.

• mc ps2 1, on the other hand, has some (random) variety to it, because
the training data has more than one occurrence of most of the notes. If
we increase the order, however, the output will sound more and more
like the training data.

• mcm [ps0, ps2 ] 1 and mcm [ps1, ps2 ] 1 generate perhaps the most
interesting results yet, in which you can hear aspects of both the as-
cending melodic nature of ps0 and ps1, and the harmonic structure of
ps2.

• mcm [ps1, reverse ps1 ] 1 has, not suprisingly, both ascending and
descending lines in it, as reflected in the training data.
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Exercise 13.3 Play with Markov Chains. Use them to generate more
melodies, or to control other aspects of the music, such as rhythm. Also
consider other kinds of training data rather than simply sequences of pitches.
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From Performance to Midi

module Euterpea.IO .MIDI .ToMidi (toMidi ,UserPatchMap, defST ,
defUpm, testMidi , testMidiA,
test , testA,writeMidi ,writeMidiA,
play , playM , playA,
makeMidi ,mToMF , gmUpm , gmTest) where

import Euterpea.Music.Note.Music
import Euterpea.Music.Note.MoreMusic
import Euterpea.Music.Note.Performance
import Euterpea.IO .MIDI .GeneralMidi
import Euterpea.IO .MIDI .MidiIO
import Euterpea.IO .MIDI .ExportMidiFile
import Sound .PortMidi
import Data.List (partition)
import Data.Char (toLower , toUpper )
import Codec.Midi

writeMidi :: (Performable a) =¿ FilePath -¿ Music a -¿ IO () writeMidi
fn = exportMidiFile fn . testMidi

writeMidiA :: (Performable a) =¿ FilePath -¿ PMap Note1 -¿ Context
Note1 -¿ Music a -¿ IO () writeMidiA fn pm con m = exportMidiFile fn
(testMidiA pm con m)

Midi is shorthand for “Musical Instrument Digital Interface,” and is a
standard protocol for controlling electronic musical instruments [Ass13a,
Ass13b]. This chapter describes how to convert an abstract performance as
defined in Chapter 8 into a standard Midi file that can be played on any
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modern PC with a standard sound card.

14.1 An Introduction to Midi

Midi is a standard adopted by most, if not all, manufacturers of electronic
instruments and personal computers. At its core is a protocol for commu-
nicating musical events (note on, note off, etc.) and so-called meta events
(select synthesizer patch, change tempo, etc.). Beyond the logical protocol,
the Midi standard also specifies electrical signal characteristics and cabling
details, as well as a standard Midi file which any Midi-compatible software
package should be able to recognize.

Most “sound-blaster”-like sound cards on conventional PC’s know about
Midi. However, the sound generated by such modules, and the sound pro-
duced from the typically-scrawny speakers on most PC’s, is often quite poor.
It is best to use an outboard keyboard or tone generator, which are attached
to a computer via a Midi interface and cables. It is possible to connect sev-
eral Midi instruments to the same computer, with each assigned to a different
channel. Modern keyboards and tone generators are quite good. Not only
is the sound excellent (when played on a good stereo system), but they are
also multi-timbral, which means they are able to generate many different
sounds simultaneously, as well as polyphonic, meaning that simultaneous
instantiations of the same sound are possible.

14.1.1 General Midi

Over the years musicians and manufacturers decided that they also wanted a
standard way to refer to commonly used instrument sounds, such as “acous-
tic grand piano,” “electric piano,” “violin,” and “acoustic bass,” as well as
more exotic sounds such as “chorus aahs,” “voice oohs,” “bird tweet,” and
“helicopter.” A simple standard known as General Midi was developed to
fill this role. The General Midi standard establishes standard names for 128
common instrument sounds (also called “patches”) and assigns an integer
called the program number (also called “program change number”), to each
of them. The instrument names and their program numbers are grouped
into “familes” of instrument sounds, as shown in Table 14.1.

Now recall that in Chapter 2 we defined a set of instruments via the
InstrumentName data type (see Figure 2.1). All of the names chosen for
that data type come directly from the General Midi standard, except for two,
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Family Program # Family Program #

Piano 1-8 Reed 65-72

Chromatic Percussion 9-16 Pipe 73-80

Organ 17-24 Synth Lead 81-88

Guitar 25-32 Synth Pad 89-96

Bass 33-40 Synth Effects 97-104

Strings 41-48 Ethnic 105-112

Ensemble 49-56 Percussive 113-120

Brass 57-64 Sound Effects 121-128

Table 14.1: General Midi Instrument Families

Percussion and Custom , which were added for convenience and extensibil-
ity. By listing the constructors in the order that reflects this assignment, we
can derive an Enum instance for InstrumentName that defines the method
toEnum that essentially does the conversion from instrument name to pro-
gram number for us. We can then define a function:

toGM :: InstrumentName → ProgNum
toGM Percussion = 0
toGM (Custom name) = 0
toGM in = fromEnum in

type ProgNum = Int

that takes care of the two extra cases, which are simply assigned to program
number 0.

The derived Enum instance also defines a function fromEnum that con-
verts program numbers to instrument names. We can then define:

fromGM :: ProgNum → InstrumentName
fromGM pn | pn > 0 ∧ pn 6 127 = fromEnum pn
fromGM pn = error ("fromGM: "++ show pn ++
" is not a valid General Midi program number")

Details: Design bug: Because the IntrumentName data type contains a non-

nullary constructor, namely Custom, the Enum instance cannot be derived. For

now it is defined in the module GeneralMidi , but a better solution is to redefine

InstrumentName in such a way as to avoid this.
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14.1.2 Channels and Patch Maps

A Midi channel is in essence a programmable instrument. You can have
up to 16 channels, numbered 0 through 15, each assigned a different pro-
gram number (corresponding to an instrument sound, see above). All of
the dynamic “Note On” and “Note Off” messages (to be defined shortly)
are tagged with a channel number, so up to 16 different instruments can be
controlled independently and simultaneously.

The assignment of Midi channels to instrument names is called a patch
map, and we define a simple association list to capture its structure:

type UserPatchMap = [(InstrumentName ,Channel )]

type Channel = Int

The only thing odd about Midi Channels is that General Midi speci-
fies that Channel 10 (9 in Euterpea’s 0-based numbering) is dedicated to
percussion (which is different from the “percussive instruments” described
in Table 14.1). When Channel 10 is used, any program number to which
it is assigned is ignored, and instead each note corresponds to a different
percussion sound. In particular, General Midi specifies that the notes cor-
responding to Midi Keys 35 through 82 correspond to specific percussive
sounds. Indeed, recall that in Chapter 6 we in fact captured these percus-
sion sounds through the PercussionSound data type, and we defined a way
to convert such a sound into an absolute pitch (i.e. AbsPitch). Euterpea’s
absolute pitches, by the way, are in one-to-one correspondence with Midi
Key nunmbers.

Except for percussion, the Midi Channel used to represent a particular
instrument is completely arbitrary. Indeed, it is tedious to explicitly define
a new patch map every time the instrumentation of a piece of music is
changed. Therefore it is convenient to define a function that automatically
creates a UserPatchMap from a list of instrument names:

makeGMMap :: [InstrumentName ]→ UserPatchMap
makeGMMap ins = mkGMMap 0 ins

where mkGMMap [ ] = [ ]
mkGMMap n | n > 15 =

error "MakeGMMap: Too many instruments."

mkGMMap n (Percussion : ins) =
(Percussion , 9) :mkGMMap n ins

mkGMMap n (i : ins) =
(i , chanList !! n) :mkGMMap (n + 1) ins
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chanList = [0 . . 8] ++ [10 . . 15] -- channel 9 is for percussion

Note that, since there are only 15 Midi channels plus percussion, we can
handle only 15 different instruments, and an error is signaled if this limit is
exceeded.1

Finally, we define a function to look up an InstrumentName in a
UserPatchMap, and return the associated channel as well as its program
number:

upmLookup :: UserPatchMap → InstrumentName
→ (Channel ,ProgNum)

upmLookup upm iName = (chan , toGM iName)
where chan = maybe (error ("instrument "++ show iName ++

" not in patch map"))
id (lookup iName upm)

14.1.3 Standard Midi Files

The Midi standard defines the precise format of a standard Midi file. At the
time when the Midi standard was first created, disk space was at a premium,
and thus a compact file structure was important. Standard Midi files are
thus defined at the bit and byte level, and are quite compact. We are not
interested in this low-level representation (any more than we are interested
in the signals that run on Midi cables), and thus in Euterpea we take a more
abstract approach: We define an algebraic data type called Midi to capture
the abstract structure of a standard Midi file, and then define functions to
convert values of this data type to and from actual Midi files. This separation
of concerns makes the structure of the Midi file clearer, makes debugging
easier, and provides a natural path for extending Euterpea’s functionality
with direct Midi capability.

We will not discuss the details of the functions that read and write
the actual Midi files; the interested reader may find them in the modules
ReadMidi and OutputMidi , respectively. Instead, we will focus on the Midi
data type, which is defined in the module Codec.Midi . We do not need all
of its functionality, and thus we show in Figure 14.1 only those parts of the
module that we need for this chapter. Here are the salient points about this
data type and the structure of Midi files:

1It is conceivable to define a function to test whether or not two tracks can be combined
with a Program Change (tracks can be combined if they don’t overlap), but this remains
for future work.
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-- From the Codec.Midi module

data Midi = Midi {fileType :: FileType ,
timeDiv :: TimeDiv
tracks :: [Track Ticks ]}
deriving (Eq , Show )

data FileType = SingleTrack | MultiTrack | MultiPattern
deriving (Eq , Show )

type Track a = [(a,Message)]

data TimeDiv = TicksPerBeat Int -- 1 through (215 - 1)
| ...
deriving (Show ,Eq)

type Ticks = Int -- 0 through (228 - 1)
type Time = Double
type Channel = Int -- 0 through 15
type Key = Int -- 0 through 127
type Velocity = Int -- 0 through 127
type Pressure = Int -- 0 through 127
type Preset = Int -- 0 through 127
type Tempo = Int -- microseconds per beat, 1 through (224 - 1)

data Message =
-- Channel Messages
NoteOff {channel :: !Channel , key :: !Key , velocity :: !Velocity }
| NoteOn {channel :: !Channel , key :: !Key , velocity :: !Velocity }
| ProgramChange {channel :: !Channel , preset :: !Preset }
| ...
-- Meta Messages
| TempoChange ! Tempo |
| ...
deriving (Show ,Eq)

fromAbsTime :: (Num a)⇒ Track a → Track a
fromAbsTime trk = zip ts ′ ms
where (ts,ms) = unzip trk
( , ts ′) = mapAccumL (λacc t → (t , t − acc)) 0 ts

Figure 14.1: Partial Definition of the Midi Data Type
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1. There are three types of Midi files:

• A Format 0, or SingleTrack , Midi file stores its information in
a single track of events, and is best used only for monophonic
music.

• A Format 1, or MultiTrack , Midi file stores its information in
multiple tracks that are played simultaneously, where each track
normally corresponds to a single Midi Channel.

• A Format 2, or MultiPattern, Midi file also has multiple tracks,
but they are temporally independent.

In this chapter we only use SingleTrack and MultiTrack Midi files,
depending on how many Channels we need.

2. The TimeDiv field refers to the time-code division used by the Midi
file. We will always use 96 time divisions, or “ticks,” per quarternote,
and thus this field will always be TicksPerBeat 96.

3. The main body of a Midi file is a list of Tracks, each of which in turn
is a list of time-stamped (in number of ticks) Messages (or “events”).

4. There are two kinds of Messages: channel messages and meta mes-
sages. Figure 14.1 shows just those messages that we are interested
in:

(a) NoteOn ch k v turns on key (pitch) k with velocity (volume) v
on Midi channel ch. The velocity is an integer in the range 0 to
127.

(b) NoteOff ch k v performs a similar function in turning the note
off.

(c) ProgChange ch pr sets the program number for channel ch to pr .
This is how an instrument is selected.

(d) TempoChange t sets the tempo to t , which is the time, in mi-
croseconds, of one whole note. Using 120 beats per minute as the
norm, or 2 beats per second, that works out to 500,000 microsec-
onds per beat, which is the default value that we will use.

14.2 Converting a Performance into Midi

Our goal is to convert a value of type Performance into a value of type Midi .
We can summarize the situation pictorially as follows ...
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Given a UserPatchMap, a Performance is converted into a Midi value
by the toMidi function. If the given UserPatchMap is invalid, it creates a
new one using makeGMMap described earlier.

toMidi :: Performance → UserPatchMap → Midi
toMidi pf upm =

let split = splitByInst pf
insts = map fst split
rightMap = if (allValid upm insts) then upm

else (makeGMMap insts)
in Midi (if length split == 1 then SingleTrack

else MultiTrack)
(TicksPerBeat division)
(map (fromAbsTime ◦ performToMEvs rightMap) split)

division = 96 :: Int

The following function is used to test whether or not every instrument
in a list is found in a UserPatchMap:

allValid :: UserPatchMap → [InstrumentName ]→ Bool
allValid upm = and ◦map (lookupB upm)

lookupB ::UserPatchMap → InstrumentName → Bool
lookupB upm x = or (map ((== x ) ◦ fst) upm)

The strategy is to associate each channel with a separate track. Thus
we first partition the event list into separate lists for each instrument, and
signal an error if there are more than 16:

splitByInst :: Performance → [(InstrumentName ,Performance)]
splitByInst [ ] = [ ]
splitByInst pf = (i , pf 1) : splitByInst pf 2

where i = eInst (head pf )
(pf 1, pf 2) = partition (λe → eInst e == i) pf

Note how partition is used to group into pf 1 those events that use the same
instrument as the first event in the performance. The rest of the events are
collected into pf 2, which is passed recursively to splitByInst .
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Details: partition takes a predicate and a list and returns a pair of lists: those
elements that satisfy the predicate, and those that do not, respectively. partition
is defined in the List Library as:

partition :: (a → Bool )→ [a ]→ ([a ], [a ])
partition p xs =
foldr select ([ ], [ ]) xs
where select x (ts , fs) | p x = (x : ts, fs)
| otherwise = (ts , x : fs)

The crux of the conversion process is in performToMEvs , which converts
a Performance into a stream of time-stamped messages, i.e. a stream of
(Tick ,Message) pairs:

type MEvent = (Ticks,Message)

defST = 500000

performToMEvs :: UserPatchMap
→ (InstrumentName ,Performance)
→ [MEvent ]

performToMEvs upm (inm, pf ) =
let (chan , progNum) = upmLookup upm inm

setupInst = (0,ProgramChange chan progNum)
setTempo = (0,TempoChange defST )
loop [ ] = [ ]
loop (e : es) = let (mev1 ,mev2 ) = mkMEvents chan e

in mev1 : insertMEvent mev2 (loop es)
in setupInst : setTempo : loop pf

A source of incompatibilty between Euterpea and Midi is that Euterpea
represents notes with an onset and a duration, while Midi represents them as
two separate events, a note-on event and a note-off event. Thus MkMEvents
turns a Euterpea Event into two MEvents, a NoteOn and a NoteOff .

mkMEvents :: Channel → Event → (MEvent ,MEvent)
mkMEvents mChan (Event {eTime = t , ePitch = p,

eDur = d , eVol = v })
= ((toDelta t ,NoteOn mChan p v ′),

(toDelta (t + d),NoteOff mChan p v ′))
where v ′ = max 0 (min 127 (fromIntegral v))

toDelta t = round (t ∗ 2.0 ∗ fromIntegral division)
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The time-stamp associated with an event in Midi is called a delta-time,
and is the time at which the event should occur expressed in time-code
divisions since the beginning of the performance. Since there are 96 time-
code divisions per quarter note, there are 4 times that many in a whole note;
multiplying that by the time-stamp on one of our Events gives us the proper
delta-time.

In the code for performToMEvs , note that the location of the first event
returned from mkMEvents is obvious; it belongs just where it was created.
However, the second event must be inserted into the proper place in the rest
of the stream of events; there is no way to know of its proper position ahead
of time. The function insertMEvent is thus used to insert an MEvent into
an already time-ordered sequence of MEvents.

insertMEvent ::MEvent → [MEvent ]→ [MEvent ]
insertMEvent mev1 [ ] = [mev1 ]
insertMEvent mev1@(t1, ) mevs@(mev2@(t2, ) :mevs ′) =

if t1 6 t2 then mev1 :mevs
else mev2 : insertMEvent mev1 mevs ′

14.3 Putting It All Together
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Basic Input/Output

So far the only input/output (IO) that we have seen in Euterpea is the
use of the play function to generate the MIDI output corresponding to a
Music value. But we have said very little about the play function itself.
What is its type? How does it work? How does one do IO in a purely
functional language such as Haskell? Our goal in this chapter is to answer
these questions. Then in Chapter 17 we will describe an elegant way to do
IO involving a “musical user interface,” or MUI.

15.1 IO in Haskell

The Haskell Report defines the result of a program to be the value of the
variable main in the moduleMain. This is a mere technicality, however, only
having relevance when you compile a program as a stand-alone executable
(see the GHC documentation for a discussion of how to do that).

The way most people run Haskell programs, especially during program
development, is through the GHCi command prompt. As you know, the
GHCi implementation of Haskell allows you to type whatever expression
you wish to the command prompt, and it will evaluate it for you.

In both cases, the Haskell system “executes a program” by evaluating
an expression, which (for a well-behaved program) eventually yields a value.
The system must then display that value on your computer screen in some
way that makes sense to you. GHC does this by insisting that the type of the
value be an instance of the Show class—in which case it “shows” the result

224
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by converting it to a string using the show function (recall the discussion in
Section 7.1). So an integer is printed as an integer, a string as a string, a list
as a list, and so on. We will refer to the area of the computer screen where
this result is printed as the standard output area, which may vary from one
implementation to another.

But what if a program is intended to write to a file? Or print a file on
a printer? Or, the main topic of this book, to play some music through the
computer’s sound card, or an external MIDI device? These are examples of
output, and there are related questions about input: for example, how does
a program receive input from the computer keyboard or mouse, or receive
input from a MIDI keyboard?

In general, how does Haskell’s “expression-oriented” notion of “computa-
tion by calculation” accommodate these various kinds of input and output?

The answer is fairly simple: in Haskell there is a special kind of value
called an action. When a Haskell system evaluates an expression that yields
an action, it knows not to try to display the result in the standard out-
put area, but rather to “take the appropriate action.” There are primitive
actions—such as writing a single character to a file or receiving a single
character from a MIDI keyboard—as well as compound actions—such as
printing an entire string to a file or playing an entire piece of music. Haskell
expressions that evaluate to actions are commonly called commands.

Some commands return a value for subsequent use by the program: a
character from the keyboard, for instance. A command that returns a value
of type T has type IO T . If no useful value is returned, the command has
type IO (). The simplest example of a command is return x , which for a
value x :: T immediately returns x and has type IO T .

Details: The type () is called the unit type, and has exactly one value, which

is also written (). Thus return () has type IO (), and is often called a “noop”

because it is an operation that does nothing and returns no useful result. Despite

the negative connotation, it is used quite often!

Remember that all expressions in Haskell must be well-typed before a
program is run, so a Haskell implementation knows ahead of time, by looking
at the type, that it is evaluating a command, and is thus ready to “take
action.”
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15.2 do Syntax

To make these ideas clearer, let’s consider a few examples. One useful IO
command is putStr, which prints a string argument to the standard output
area, and has type String → IO (). The () simply indicates that there is
no useful result returned from this action; its sole purpose is to print its
argument to the standard output area. So the program:

module Main where
main = putStr "Hello World\n"

is the canonical “Hello World” program that is often the first program that
people write in a new language.

Suppose now that we want to perform two actions, such as first writing
to a file named "testFile.txt", then printing to the standard output area.
Haskell has a special keyword, do, to denote the beginning of a sequence of
commands such as this, and so we can write:

do writeFile "testFile.txt" "Hello File System"

putStr "Hello World\n"

where the file-writing function writeFile has type:

writeFile :: FilePath → String → IO ()
type FilePath = String

Details: A do expression allows one to sequence an arbitrary number of com-

mands, each of type IO (), using layout to distinguish them (just as in a let or

where expression). When used in this way, the result of a do expression also has

type IO ().

So far we have only used actions having type IO (); i.e. output actions.
But what about input? As above, we will consider input from both the user
and the file system.

To receive a line of input from the user (which will be typed in the
standard input area of the computer screen, usually the same as the standard
output area) we can use the function:

getLine :: IO String

Suppose, for example, that we wish to read a line of input using this func-
tion, and then write that line (a string) to a file. To do this we write the
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compound command:

do s ← getLine
writeFile "testFile.txt" s

Details: Note the syntax for binding s to the result of executing the getLine

command—when doing this in your program, you will have to type <-. Since the

type of getLine is IO String, the type of s is String. Its value is then used in the

next line as an argument to the writeFile command.

Similarly, we can read the entire contents of a file using the command
readFile :: FilePath → IO String , and then print the result to standard
output:

do s ← readFile "testFile.txt"

putStr s

Details: Any type that is an instance of the Monad type class can be used with

the do syntax to sequence actions. The Monad class is discussed in detail in

Chapter 16. It suffices to say for now that the IO type is an instance of the

Monad class.

15.3 Actions are Just Values

There are many other commands available for file, system, and user IO,
some in the Standard Prelude, and some in various libraries (such as IO ,
Directory , System , and Time). We will not discuss many of these here,
other than the MIDI IO commands described in Section 15.4.

Before that, however, we wish to emphasize that, despite the special do
syntax, Haskell’s IO commands are no different in status from any other
Haskell function or value. For example, it is possible to create a list of
actions, such as:

actionList = [putStr "Hello World\n",
writeFile "testFile.txt" "Hello File System",
putStr "File successfully written."]
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However, a list of actions is just a list of values: they actually do not do
anything until they are sequenced appropriately using a do expression, and
then returned as the value of the overall program (either as the variable
main in the module Main, or typed at the GHCi prompt). Still, it is often
convenient to place actions into a list as above, and the Haskell provides
some useful functions for turning them into single commands. In particular,
the function sequence in the Standard Prelude, when used with IO, has
type:

sequence :: [IO a ]→ IO ()

and can thus be applied to the actionList above to yield the single command:

main :: IO ()
main = sequence actionList

For a more interesting example of this idea, we first note that Haskell’s
strings are really just lists of characters. Indeed, String is a type synonym
for a list of characters:

type String = [Char ]

Because strings are used so often, Haskell allows you to write "Hello" in-
stead of [’H’, ’e’, ’l’, ’l’, ’o’]. But keep in mind that this is just syntax—
strings really are just lists of characters, and these two ways of writing them
are identical from Haskell’s perspective.

(Earlier the type synonym FilePath was defined for String . This shows
that type synonyms can be created using other type synonyms.)

Now back to the example. From the function putChar :: Char → IO (),
which prints a single character to the standard output area, we can define
the function putStr used earlier, which prints an entire string. To do this,
let’s first define a function that converts a list of characters (i.e. a string)
into a list of IO actions:

putCharList :: String → [IO ()]
putCharList = map putChar

With this, putStr is easily defined:

putStr :: String → IO ()
putStr = sequence ◦ putCharList

Or, more succinctly:

putStr :: String → IO ()
putStr = sequence ◦map putStr
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Of course, putStr can also be defined directly as a recursive function,
which we do here just to emphasize that actions are just values, so we can
use all of the functional programming skills that we normally use:

putStr :: String → IO ()
putStr [ ] = return ()
putStr (c : cs) = do putChar c

putStr cs

IO processing in Haskell is consistent with everything we have learned
about programming with expressions and reasoning through calculation, al-
though that may not be completely obvious yet. Indeed, it turns out that a
do expression is just syntax for a more primitive way of combining actions
using functions, namely a monad, to be revealed in full in Chapter 16.

15.4 Reading and Writing MIDI Files

[TODO: Explain MIDI-file IO functions defined in Codec.Midi , as well as
the Euterpea functions for writing MIDI files.]



Chapter 16

Higher-Order Types and
Monads

All of the types that we have considered thus far in this text have been
first order. For example, the type constructor Music has so far always been
paired with an argument, as in Music Pitch. This is because Music by
itself is a type constructor : something that takes a type as an argument and
returns a type as a result. There are no values in Haskell that have this
type, but such “higher-order types” can be used in type class declarations
in useful ways, as we shall see in this chapter.

16.1 The Functor Class

To begin, consider the Functor class described previously in Section 7.4.3,
and defined in the Standard Prelude:1

class Functor f where
fmap :: (a → b)→ f a → f b

1The term functor (as well as the term monad to be introduced shortly) comes from a
branch of abstract mathematics known as category theory [Pie91]. This reflects the strong
mathematical principles that underly Haskell, but otherwise does not concern us here; i.e.,
you do not need to know anything about category theory to understand Haskell’s functors
and monads.

230
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Details: Type applications are written in the same manner as function applica-

tions, and are also left associative: the type T a b is equivalent to ((T a) b).

There is something new here: the type variable f is applied to other
type variables, as in f a and f b. Thus we would expect f to be a type
constructor such as Music that can be applied to an argument. Indeed, a
suitable instance of Functor for Music is:

instance Functor Music where
fmap f m = mMap f m

Similarly for Primitive:

instance Functor Primitive where
fmap f p = pMap f p

Indeed, in retrospect, back in Chapter 6 where we defined mMap and
pMap, we could have declared Music and Primitive as instances of Monad
directly, and avoided defining the names mMap and pMap altogether:

instance Functor Music where
fmap f (Prim p) = Prim (fmap f p)
fmap f (m1 :+:m2) = fmap f m1 :+: fmap f m2

fmap f (m1 :=:m2) = fmap f m1 :=: fmap f m2

fmap f (Modify c m) = Modify c (fmap f m)

instance Functor Primitive where
pMap :: (a → b)→ Primitive a → Primitive b
pMap f (Note d x ) = Note d (f x )
pMap f (Rest d) = Rest d

In Haskell we write Music Pitch for a Music value instantiated on Pitch
values; Music is the type constructor. Similarly, we write [Int ] for lists
instantiated on integers; but what is the type constructor for lists? Because
of Haskell’s special syntax for the list data type, there is also a special syntax
for its type constructor, namely [ ].

Details: Similarly, for tuples the type constructors are (, ), (, , ), (, , , ), and so

on, and the type constructor for the function type is (→). This means that the

following pairs of types are equivalent: [a ] and [ ] a, f → g and (→) f g, (a, b)

and (, ) a b, and so on.
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This allows us to create an instance of Functor for lists, as follows:

instance Functor [ ] where
fmap f [ ] = [ ]
fmap f (x : xs) = f x : fmap f xs

Note the use of [ ] here in two ways: as a value in the list data type, and as
a type constructor as described above.

Of course, the above declaration is equivalent to:

instance Functor [ ] where
fmap = map

where map is the familiar function that we have been using since Chapter
3. This instance is in fact predefined in the Standard Prelude.

One of the nice things about the Functor class, of course, is that we
can now use the same name, fmap, for lists, Music, and Primitive values
(and any other data type for which an instance of Functor is declared).
This could not have been done without higher-order type constructors, and
here demonstrates the ability to handle generic “container” types, allowing
functions such as fmap to work uniformly over them.

As mentioned in Section 7.7, type classes often imply a set of laws which
govern the use of the operators in the class. In the case of the Functor class,
the following laws are expected to hold:

fmap id = id
fmap (f ◦ g) = fmap f ◦ fmap g

Details: id is the identity function, λx → x . Although id is polymorphic, note

that if its type on the left-hand side of the equation above is a → a, then its type

on the right must be t a → t a, for some type constructor t that is an instance

of Functor .

These laws ensure that the shape of the “container type” is unchanged
by fmap, and that the contents of the container are not re-arranged by the
mapping function.

Exercise 16.1 Verify that the instances of Functor for lists, Primitive, and
Music are law-abiding.
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16.2 The Monad Class

There are several classes in Haskell that are related to the notion of a monad,
which can be viewed as a generalization of the principles that underly IO.
Because of this, although the names of the classes and methods may seem
unusual, these “monadic” operations are rather intuitive and useful for gen-
eral programming.2

There are three classes associated with monads: Functor (which we
have discussed already), Monad (also defined in the Standard Prelude), and
MonadPlus (defined in Control .Monad).

The Monad class defines four basic operators: (>>=) (often pronounced
“bind”), (>>) (often pronounced “sequence”), return , and fail :

class Monad m where
(>>=) ::m a → (a → m b)→ m b
(>>) ::m a → m b → m b
return :: a → m a
fail :: String → m a

m >> k = m >>= \ → k
fail s = error s

Details: The two infix operators above are typeset nicely here; using a text editor,

you will have to type >>= and >> instead.

The default methods for (>>) and fail define behaviors that are almost
always just what is needed. Therefore most instances of Monad need only
define (>>=) and return.

Before studying examples of particular instances of Monad , we will first
reveal another secret in Haskell, namely that the do syntax is actually short-
hand for use of the monadic operators! The rules for this are a bit more
involved than those for other syntax we have seen, but are still straightfor-
ward. The first rule is this:

do e ⇒ e

2Moggi [Mog89] was one of the first to point out the value of monads in describing the
semantics of programming languages, and Wadler first popularized their use in functional
programming [Wad92, PJW93].
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So an expression such as do putStr "Hello World" is equivalent to just
putStr "Hello World".

The next rule is:

do e1; e2; ...; en
⇒ e1 >> do e2; ...; en

For example, combining this rule with the previous one means that:

do writeFile "testFile.txt" "Hello File System"

putStr "Hello World"

is equivalent to:

writeFile "testFile.txt" "Hello File System">>
putStr "Hello World"

Note now that the sequencing of two commands is just the application of
the function (>>) to two values of type IO (). There is no magic here—it is
all just functional programming!

Details: What is the type of (>>) above? From the type class declaration we
know that its most general type is:

(>>) ::Monad m ⇒ m a → m b → m b

However, in the case above, its two arguments both have type IO (), so the type
of (>>) must be:

(>>) :: IO ()→ IO ()→ IO ()

That is, m = IO , a = (), and b = (). Thus the type of the result is IO (), as

expected.

The rule for pattern matching is the most complex, because we must
deal with the situation where the pattern match fails:

do pat ← e1; e2; ...; en
⇒ let ok pat = do e2; ...; en

ok = fail "..."
in e1 >>= ok

The right way to think of (>>=) above is simply this: it “executes” e1, and
then applies ok to the result. What happens after that is defined by ok : if
the match succeeds, the rest of the commands are executed, otherwise the
operation fail in the monad class is called, which in most cases (because of
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the default method) results in an error .

Details: The string argument to error is a compiler-generated error message,

preferably giving some indication of the location of the pattern-match failure.

A special case of the above rule is the case where the pattern pat is just
a name, in which case the match cannot fail, so the rule simplifies to:

do x ← e1; e2; ...; en
⇒ e1 >>= λx → do e2; ...; en

The final rule deals with the let notation within a do expression:

do let decllist ; e2; ...; en
⇒ let decllist in do e2; ...; en

Details: Although we have not used this feature, note that a let inside of a do

can take multiple definitions, as implied by the name decllist .

As mentioned earlier, because you already understand Haskell IO, you
should have a fair amount of intuition about what the monadic operators
do. Unfortuantely, we cannot look very closely at the instance of Monad
for the type IO , since it ultimately relies on the state of the underlying
operating system, which we do not have direct access to other than through
primitive operations that communicate with it. Even then, these operations
vary from system to system.

Nevertheless, a proper implementation of IO in Haskell is obliged to obey
the following monad laws:

return a >>= k = k a
m >>= return = m
m >>= (λx → k x >>= h) = (m >>= k)>>= h

The first of these laws expresses the fact that return simply “sends” its value
to the next action. Likewise, the second law says that if we immediately
return the result of an action, we might as well just let the action return the
value itself. The third law is the most complex, and essentially expresses an
associativity property for the bind operator (>>=). A special case of this law
applies to the sequence operator (>>):
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m1 >> (m2 >>m3) = (m1 >>m2)>>m3

in which case the associativity is more obvious.

There is one other monad law, whose purpose is to connect the Monad
class to the Functor class, and therefore only applies to types that are in-
stances of both:

fmap f xs = xs >>= return ◦ f
We will see an example of this shortly.

Of course, this law can also be expressed in do notation:

fmap f xs = do x ← xs ; return (f x )

as can the previous ones for do:

do x ← return a; k x = k a
do x ← m; return x = m
do x ← m; y ← k x ; h y = do y ← (do x ← m; k x ); h y
do m1;m2;m3 = do (do m1;m2);m3

So something like this:

do k ← getKey w
return k

is equivalent to just getKey w , according to the second law above. As a final
example, the third law above allows us to transform this:

do k ← getKey w
n ← changeKey k
respond n

into this:

let keyStuff = do k ← getKey w
changeKey k

in do n ← keyStuff
respond n

Exercise 16.2 Verify the associativity law for (>>), starting with the asso-
ciativity law for (>>=).
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16.2.1 Other Instances of Monad

Maybe In addition to IO , the Standard Prelude’s Maybe data type is a
predefined instance of Monad :

instance Monad Maybe where
Just x >>= k = k x
Nothing >>= k = Nothing
return = Just
fail s = Nothing

Details: Maybe is also a predefined instance of Functor :

instance Functor Maybe where
fmap f Nothing = Nothing
fmap f (Just x ) = Just (f x )

When used with this instance, the types of the monad operators are:

(>>=) ::Maybe a → (a → Maybe b)→ Maybe b
return :: a → Maybe a

We leave as an exercise the task of proving that this instance is law-abiding.

To see how this might be used, consider a computation involving func-
tions f :: Int → Int , g :: Int → Int , and x :: Int :

g (f x )

Now suppose that each of the calculations using f and g could in fact be
erroneous, and thus the results are encoded using the Maybe data type.
Unfortunately this can become rather tedious to program, since each result
that might be an error must be checked manually, as in:

case (f x ) of
Nothing → Nothing
Just y → case (g y) of

Nothing → Nothing
Just z → z

Alternatively, we could take advantage ofMaybe’s membership in theMonad
class, and convert this into monadic form:

f x >>= λy →
g y >>= λz →
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return z

Or, using the more familiar do notation:

do y ← f x
z ← g y
return z

Thus the tedium of the error check is “hidden” within the monad. In this
sense monads are a good example of the abstraction principle in action
(pardon the pun)!

It is also worth noting the following simplification:

f x >>= λy →
g y >>= λz →
return z
⇒ {currying simplification }
f x >>= λy →
g y >>= return
⇒ {monad law for return }
f x >>= λy →
g y
⇒ {currying simplification }
f x >>= g

So we started with g (f x ) and ended with f x >>= g ; this is not too bad
considering the alternative that we started with!

For an even more pleasing result, we can define a monadic composition
operator:

composeM ::Monad m ⇒ (b → m c)→ (a → m b)→ (a → m c)
(g ‘composeM ‘ f ) x = f x >>= g

in which case we started with (g ◦ f ) x and ended with (g ‘composeM ‘ f ) x .

Details: Note the type of composeM . It demonstrates that higher-order type

constructors are also useful in type signatures.

Lists The list data type in Haskell is also a predefined instance of class
Monad :

instance Monad [ ] where
m >>= k = concat (map k m)
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return x = [x ]
fail x = [ ]

Details: Recall that concat takes a list of lists and concatenates them all together.
It is defined in the Standard Prelude as:

concat :: [ [a ] ]→ [a ]
concat xss = foldr (++) [ ] xss

The types of the monadic operators in this case are:

(>>=) :: [a ]→ (b → [b ])→ [b ]
return :: a → [a ]

The monadic functions in this context can be thought of as dealing with
“multiple values.” Monadic binding takes a set (list) of values and applies
a function to each of them, collecting all generated values together. The
return function creates a singleton list, and fail an empty one. For example,

do x ← [1, 2, 3]
y ← [4, 5, 6]
return (x , y)

returns the list:

[(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)]

which happens to be the same list generated by:

[(x , y) | x ← [1, 2, 3], y ← [4, 5, 6]]

So list comprehension syntax is in essence another kind of monad syntax;
indeed, they are not very different! (However, list comprehensions can only
be used with lists.)

Note that if:

do x ← xs ; return (f x )

is equivalent to:

[f x | x ← xs ]

(which is clearly just map f xs), then at least for the instance of lists in
Monad , the last monad law makes perfect sense:

fmap f xs = do x ← xs ; return (f x )
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Also note that the Maybe data type in monadic form behaves as a sort of
truncated list in monadic form: Nothing is the same as [ ] and Just x is the
same as [x ].)

Exercise 16.3 Verify that all of the instance declarations in this section
are law-abiding.

Exercise 16.4 Consider the identity data type defined by:

data Id a = Id a

Create an instance of Monad for Id , and prove that it is law-abiding.

16.2.2 Other Monadic Operations

The Standard Prelude has several functions specifically designed for use with
monads; they are shown in Figure 16.1. Indeed, one of these we have already
used: sequence . Any mystery about how it works should be gone now; it
is a very simple fold of the sequencing operator (>>), with return () at the
end. Note also the definition of sequence, a generalization of sequence that
returns a list of values of the intermediate results.

Finally, recall from Section 15.3 that putStr can be defined as:

putStr :: String → IO ()
putStr s = sequence (map putChar s)

Using mapM from Figure 16.1, this can be rewritten as:

putStr :: String → IO ()
putStr s = mapM putChar s

16.3 The MonadPlus Class

The class MonadPlus , defined in the Standard Library Control .Monad , is
used for monads that have a zero element and a plus operator :

class Monad m ⇒ MonadPlus m where
mzero ::m a
mplus ::m a → m a → m a

The zero element should obey the following laws:
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sequence ::Monad m ⇒ [m a ]→ m [a ]
sequence = foldr mcons (return [ ])

where mcons p q = do x ← p
xs ← q
return (x : xs)

sequence ::Monad m ⇒ [m a ]→ m ()
sequence = foldr (>>) (return ())

mapM ::Monad m ⇒ (a → m b)→ [a ]→ m [b ]
mapM f as = sequence (map f as)

mapM ::Monad m ⇒ (a → m b)→ [a ]→ m ()
mapM f as = sequence (map f as)

(=<<) ::Monad m ⇒ (a → m b)→ m a → m b
f =<< x = x >>= f

Figure 16.1: Monadic Utility Functions

m >>= (λx → mzero) = mzero
mzero >>=m = mzero

and the plus operator should obey these:

m ‘mplus ‘mzero = m
mzero ‘mplus ‘m = m

By analogy to arithmetic, think of mzero as 0, mplus as addition, and (>>=)
as multiplication. The above laws should then make more sense.

For the Maybe data type, the zero and plus values are:

instance MonadPlus Maybe where
mzero = Nothing
Nothing ‘mplus ‘ ys = ys
xs ‘mplus ‘ ys = xs

and for lists they are:

instance MonadPlus [ ] where
mzero = [ ]
mplus = (++)
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So you can see now that the familiar concatentation operation (++) that we
have been using all along for lists is just a special case of the mplus operator.

It is worth pointing out that the IO monad is not an instance of the
MonadPlus class, since it has no zero element. For if it did have a zero
element, then the IO action putStr "Hello" >> zero should not print the
string "Hello", according to the first zero law above. But this is counter-
intuitive, or at least is certainly not what the designers of Haskell had in
mind for IO.

The Monad module in the Standard Library also includes several other
useful functions defined in terms of the monadic primitives. You are encour-
aged to read these for possible use in your own programs.

Exercise 16.5 Verify that the instances of MonadPlus for the Maybe and
list data types are law-abiding.

16.4 State Monads

Monads are commonly used to simulate stateful, or imperative, computa-
tions, in which the details of updating and passing around the state are
hidden within the mechanics of the monad. Generally speaking, a state
monad has a type of the form:

data SM s a = SM (s → (s, a))

where s is the state type, and a is the value type. The instance of this type
in Monad is given by:

instance Monad (SM s) where
return a

= SM $ λs0 → (s0, a)
SM sm0 >>= fsm1

= SM $ λs0 →
let (s1, a1) = sm0 s0

SM sm1 = fsm1 a1
(s2, a2) = sm1 s1

in (s2, a2)

The last equation in the let expression could obviously be eliminated, but
it is written this way to stress the symmetry in the treatment of the two
commands.
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Details: Note that SM is a type constructor that takes two type arguments.

Applyiing it to one argument (as in SM s above) is a kind of type-level currying,

yielding a new type constructor that takes one argument, as required by theMonad

class.

A good example of a state monad, at least abstractly speaking, is Haskell’s
IO type, where the state s can be thought of as the “state of the world,”
such as the contents of the file system, the image on a display, and the
output of a printer.

But what about creating our own state monad? As a simple example,
consider this definition of a Tree data type:

data Tree a = Leaf a | Branch (Tree a) (Tree a)
deriving Show

Suppose now we wish to define a function label :: Tree a → Tree Int such
that, for example, the value test :

test = let t = Branch (Leaf ’a’) (Leaf ’b’)
in label (Branch t t)

evaluates to:

Branch (Branch (Leaf 0) (Leaf 1))
(Branch (Leaf 2) (Leaf 3))

Without knowing anything about monads, this job is relatively easy:

label :: Tree a → Tree Int
label t = snd (lab t 0)

lab :: Tree a → Int → (Int ,Tree Int)
lab (Leaf a) n

= (n + 1,Leaf n)
lab (Branch t1 t2) n

= let (n1, t
′
1) = lab t1 n

(n2, t
′
2) = lab t2 n1

in (n2,Branch t ′1 t
′
2)

Although simple, there is an undeniable tedium in “threading” the value of
n from one call to lab to the next. To solve this problem, note that lab t
has type Int → (Int ,Tree Int), which is in the right form for a state monad.
Of course, we need a true data type, and so we write:

newtype Label a = Label (Int → (Int , a))
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Details: A newtype declaration behaves just like a data declaration, except that

only one constructor is allowed on the right-hand side. This allows the compiler to

implement the datatype more efficiently, since it “knows” that only one possibility

exists. It is also more type-safe than a type synonym, since, like data, it generates

a new type, rather than being a synonym for an existing type.

The Monad instance for Label is just like that for SM above:

instance Monad Label where
return a

= Label $ λs → (s, a)
Label lt0 >>= flt1

= Label $ λs0 →
let (s1, a1) = lt0 s0

Label lt1 = flt1 a1
in lt1 s1

Whereas the monad handles the threading of the state, we also need a
way to extract information from the state, as needed in a particular applica-
tion. In the case of labeling trees, we need to know what the current value
of the state (an Int) is, at each point that we encounter a leaf. So we define:

getLabel :: Label Int
getLabel = Label $ λn → (n + 1,n)

Now we can write the following monadic version of the labeling function:

mlabel :: Tree a → Tree Int
mlabel t = let Label lt = mlab t

in snd (lt 0)

mlab :: Tree a → Label (Tree Int)
mlab (Leaf a)

= do n ← getLabel
return (Leaf n)

mlab (Branch t1 t2)
= do t ′1 ← mlab t1

t ′2 ← mlab t2
return (Branch t ′1 t

′
2)

Note that the threading of the state has been completely eliminated from
mlab, as has the incrementing of the state, which has been isolated in the
function getLabel .



CHAPTER 16. HIGHER-ORDER TYPES AND MONADS 245

As an example, this test case:

mtest = let t = Branch (Leaf ’a’) (Leaf ’b’)
in mlabel (Branch t t)

generates the same result as the non-monadic version above.

For this simple example you may decide that eliminating the threading
of state is not worth it. Indeed, in reality it has just been moved from the
definition of lab to the method declaration for (>>=), and the new version of
the program is certainly longer than the old! But the capture of repetitious
code into one function is the whole point of the abstraction principle, and
hopefully you can imagine a context where threading of state happens often,
perhaps hundreds of times, in which case the abstraction will surely pay off.
IO is one example of this (imagine threading the state of the world on every
IO command).

Exercise 16.6 Recall the definition of replFun in Chapter ??, Section 12.2.
Note how it threads the random number source through the program. Rewrite
this function using a state monad so that this threading is eliminated.

16.5 Type Class Type Errors

As you know, Haskell’s type system detects ill-typed expressions. But what
about errors due to malformed types? The value (+) 1 2 3 results in a type
error since (+) takes only two arguments. Similarly, the type Tree Int Int
should result in some sort of an error since the Tree type constructor takes
only a single argument. So, how does Haskell detect malformed types? The
answer is a second type system which ensures the correctness of types! That
is, each type is assigned its own type—which is called its kind—and these
kinds are used to ensure that the type is used correctly.

There are only two kinds that we need to consider:

• The symbol ∗ represents the kind of type associated with concrete data
objects. That is, if the value v has type t , then the kind of t must be
∗.

• If κ1 and κ2 are kinds, then κ1 → κ2 is the kind of types that take a
type of kind κ1 and return a type of kind κ2.
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The details of how kinds are used to detect malformed types are beyond the
scope of this text, but it is helpful to walk through a familiar example:

Int has kind ∗, as does the type Tree Int . The type constructor Tree ,
however, has kind ∗ → ∗. Instances of the Functor class must all have the
kind ∗ → ∗. Thus a kind error would result from a declaration such as:

instance Functor Int where ...

or

instance Functor (Tree Int) where ...

Kinds do not appear directly in Haskell programs; the Haskell system infers
them without any need for “kind declarations.” Kinds stay in the back-
ground of a Haskell program except when a kind error occurs, in which case
an error message may refer to the kind conflict. Fortunately, kinds are sim-
ple enough that your Haskell system should be able to provide descriptive
error messages in most cases.



Chapter 17

Musical User Interface

Daniel Winograd-Cort

{-# LANGUAGE Arrows #-}
module Euterpea.Examples .MUI where
import Euterpea

This module is not part of the standard Euterpea module hierarchy (i.e.
those modules that get imported by the header command “import Euterpea”),
but it can be found in the Examples folder in the Euterpea distribution, and
can be imported into another module by the header command:

import Euterpea.Examples .MUI

Details: To use the arrow syntax described in this chapter, it is necessary to use
the following compiler pragma in GHC:

{-# LANGUAGE Arrows #-}

17.1 Introduction

Many music software packages have a graphical user interface (aka “GUI”)
that provides varying degrees of functionality to the user. In Euterpea a
basic set of widgets is provided that are collectively referred to as the mu-

247
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sical user interface, or MUI. This interface is quite different from the GUI
interfaces found in most conventional languages, and is built around the con-
cepts of signal functions and arrows [HCNP03, Hug00].1 Signal functions are
an abstraction of the time-varying values inherent in an interactive system
such as a GUI or Euterpea’s MUI. Signal functions are provided for creating
graphical sliders, pushbuttons, and so on for input; textual displays, graphs,
and graphic images for output; and textboxes, virtual keyboards, and more
for combinations of input and output. In addition to these graphical wid-
gets, the MUI also provides an interface to standard MIDI input and output
devices.

17.2 Basic Concepts

A signal is a time-varying quantity. Conceptually, at least, most things in
our world, and many things that we program with, are time-varying. The
position of a mouse is time-varying. So is the voltage used to control a
motor in a robot arm. Even an animation can be thought of as a time-
varying image.

A signal function is an abstract function that converts one signal into
another. Using the examples above, a signal function may add an offset to a
time-varying mouse position, filter out noise from the time-varying voltage
for a robot motor, or speed up or slow down an animation.

Perhaps the simplest way to understand Euterpea’s approach to pro-
gramming with signals is to think of it as a language for expressing signal
processing diagrams (or equivalently, electrical circuits). We can think of the
lines in a typical signal processing diagram as signals, and the boxes that
convert one signal into another as signal functions. For example, this very
simple diagram has two signals, x and y , and one signal function, sigfun:

Image not in repository!

Using Haskell’s arrow syntax [Hug00, Pat01], this diagram can be expressed
as a code fragment in Euterpea simply as:

y ← sigfun −≺ x

1The Euterpea MUI is built using the arrow-based GUI library UISF, which is its own
standalone package. UISF, in turn, borrows concepts from Fruit [CE01, Cou04].
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Details: The syntax ← and −≺ is typeset here in an attractive way, but the user

will have to type <- and -<, respectively, in her source file.

In summary, the arrow syntax provides a convenient way to compose
signal functions together—i.e. to wire together the boxes that make up a
signal processing diagram.

17.2.1 The Type of a Signal Function

Polymorphically speaking, a signal function has type SF a b, which should
be read, “the type of signal functions that convert signals of type a into
signals of type b.”

For example, suppose the signal function sigfun used earlier has type
SF T1 T2, for some types T1 and T2. In that case, and using the example
above, x will have type T1, and y will have type T2. Although signal
functions act on signals, the arrow notation allows us to manipulate the
instantaneous values of the signals, such as x and y above, directly.

A signal function whose type is of the form SF () b essentially takes no
input, but produces some output of type b. Because of this we often refer
to such a signal function as a signal source. Similarly, a signal function of
type SF a () is called a signal sink—it takes input, but produces no output.
Signal sinks are essentially a form of output to the real world.

We can also create and use signal functions that operate on signals of
tuples. For example, a signal function exp :: SF (Double,Double) Double
that raises the first argument in a tuple to the power of its second, at every
point in time, could be used as follows:

z ← exp −≺ (x , y)

As mentioned earlier, a signal function is “abstract,” in the sense that
it cannot be applied like an ordinary function. Indeed, SF is an instance of
the Arrow type class in Haskell, which only provides operations to compose
one signal function with another in several ways. The Arrow class and how
all this works for signal functions will be described in Chapter ??. For now,
it suffices to say that programming in this style can be awkward and that
Haskell provides the arrow syntax described above to make the programming
easier and more natural.

A Euterpea MUI program expresses the composition of a possibly large
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number of signal functions into a composite signal function that is then “run”
at the top level by a suitable interpreter. A good analogy for this idea is
a state or IO monad, where the state is hidden, and a program consists of
a linear sequencing of actions that are eventually run by an interpreter or
the operating system. But in fact arrows are more general than monads,
and in particular the composition of signal functions does not have to be
completely linear, as will be illustrated shortly.

17.2.2 proc Declarations

Arrows and arrow syntax will be described in more detail in Chapter ??.
For now, keep in mind that ← and −≺ are part of the syntax, and are
not simply binary operators. Indeed, we cannot just write the earlier code
fragments anywhere. They have to be within an enclosing proc construct
whose result type is that of a signal function. The proc construct begins
with the keyword proc along with a formal parameter, analogous to an
anonymous function. For example, a signal function that takes a signal of
type Double and adds 1 to it at every point in time, and then applies sigfun
to the resulting signal, can be written:

proc y → do
x ← sigfun −≺ y + 1
outA−≺ x

outA is a special signal function that specifies the output of the signal func-
tion being defined.

Details: The do keyword in arrow syntax introduces layout, just as it does in

monad syntax.

Note the analogy of this code to the following snippet involving an ordi-
nary anonymous function:

λy →
let x = sigfun ′ (y + 1)
in x

The important difference, however, is that sigfun works on a signal, i.e.
a time-varying quantity. To make the analogy a little stronger, we could
imagine a signal being implemented as a stream of discrete values. In which
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case, to achieve the effect of the arrow code given d, we would have to write
something like this:

λys →
let xs = sigfun ′′ (map (+1) ys)
in xs

The arrow syntax allows us to avoid worrying about the streams themselves.

17.2.3 Four Useful Functions

There are four useful auxiliary functions that will make writing signal func-
tions a bit easier. The first two essentially “lift” constants and functions
from the Haskell level to the arrow (signal function) level:

arr :: (a → b)→ SF a b
constA :: b → SF () b

For example, a signal function that adds one to every sample of its input
can be written simply as arr (+1), and a signal function that returns the
constant 440 as its result can be written constA 440 (and is a signal source,
as defined earlier).

The other two functions allow us to compose signal functions:

(>>>) :: SF a b → SF b c → SF a c
(<<<) :: SF b c → SF a b → SF a c

(<<<) is analogous to Haskell’s standard composition operator (◦), whereas
(>>>) is like “reverse composition.”

As an example that combines both of the ideas above, recall the very
first example given in this chapter:

proc y → do
x ← sigfun −≺ y + 1
outA−≺ x

which essentially applies sigfun to one plus the input. This signal function
can be written more succinctly as either arr (+1) >>> sigfun or sigfun <<<
arr (+1).

The functions (>>>), (<<<), and arr are actually generic operators on
arrows, and thus to use them one may import them from the Arrow library.
However, Euterpea reexports them automatically so we need not do this.
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17.2.4 Events

Although signals are a nice abstraction of time-varying entities, and the
world is arguably full of such entities, there are some things that happen at
discrete points in time, like a mouse click, or a MIDI keyboard press, and so
on. We call these events. To represent events, and have them coexist with
signals, recall the Maybe type defined in the Standard Prelude:

data Maybe a = Nothing | Just a
Conceptually, we define an event simply as a value of type Maybe a, for
some type a. We say that the value associated with an event is “attached
to” or “carried by” that event.

However, to fit this into the signal function paradigm, we imagine signals
of events—in other words, event streams. So a signal function that takes
events of type Maybe T1 as input, and emits events of type Maybe T2, would
have type SF (Maybe T1) (Maybe T2). When there is no event, an event
stream will have the instantaneous value Nothing , and when an event occurs,
it will have the value Just x for some value x.

For convenience Euterpea defines a type synonym for events:

type SEvent a = Maybe a

The name SEvent is used to distinguish it from performance Event as defined
in Chapter 8. “SEvent” can be read as “signal event.”

17.2.5 Feedback

If we think about signal functions and arrows as signal processing diagrams,
then so far, we have only considered how to connect them so that the streams
all flow in the same direction. However, there may be times that we want
to feed an output of one signal function back in as one of its inputs, thus
creating a loop.

How can a signal function depend on its own output? At some point
in the loop, we need to introduce a delay function. Euterpea has a few
different delay functions that we will decribe in more detail later in this
chapter (Section 17.4.4), but for now, we will casually introduce the simplest
of these: fcdelay .

fcdelay :: b → DeltaT → SF b b

The name fcdelay stands for “fixed continuous delay”, and it delays a contin-
uous signal for a fixed amount of time. (Note that DeltaT is a type synonym
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for Double and represents a change in time, or δt.) Thus, the signal function
fcdelay b t will delay its input signal for t seconds, emitting the constant
signal b for the first t seconds.

With a delay at the ready, we can create a loop in a signal function by
using the rec keyword in the arrow syntax. This keyword behaves much like
it does in monadic do syntax and allows us to use a signal before we have
defined it.

For instance, we can create a signal function that will count how many
seconds have gone by since it started running:

secondCounter :: SF () Integer
secondCounter = proc ()→ do

rec count ← fcdelay 0 1−≺ count + 1
outA−≺ count

Details: The rec keyword comes from an extension to arrows called arrow loop.
To use the same ability outside of the arrow syntax requires the loop operator:

loop :: SF (b, d) (c, d)→ SF b c

17.2.6 [Advanced] Why Arrows?

It is possible, and fairly natural, to define signal functions directly, say as an
abstract type Signal T , and then define functions to add, multiply, take the
sine of, and so on, signals represented in this way. For example, Signal Float
would be the type of a time-varying floating-point number, Signal AbsPitch
would be the type of a time-varying absolute pitch, and so on. Then given
s1, s2 :: Signal Float we might simply write s1 + s2, s1 ∗ s2, and sin s1 as
examples of applying the above operations. Haskell’s numeric type class
hierarchy makes this particularly easy to do. Indeed, several domain-specific
languages based on this approach have been designed, beginning with the
language Fran [EH97] that was designed for writing computer animation
programs.

But years of experience and theoretical study have revealed that such an
approach leads to a language with subtle time- and space-leaks,2 for reasons
that are beyond the scope of this textbook [LH07].

2A time-leak in a real-time system occurs whenever a time-dependent computation falls
behind the current time because its value or effect is not needed yet, but then requires
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Perhaps surprisingly, these problems can be avoided by using arrows.
Programming in this style gives the user access to signal functions, and the
individual values that comprise a signal, but not to the actual signal itself.
By not giving the user direct access to signals, and providing a disciplined
way to compose signal functions (namely arrow syntax), time- and space-
leaks are avoided. In fact, the resulting framework is highly amenable to
optimization, although this requires using special features in Haskell, as
described in Chapter ??.

17.3 The UISF Arrow

SF as used in this chapter so far is an instance of the Arrow class, but is
not the actual type used for constructing MUIs. The core component of
Euterpea’s MUI is the user interface signal function, captured by the type
UISF , which is also an instance of the Arrow class. So instead of SF , in the
remainder of this chapter we will use UISF , but all of the previous discussion
about signal functions and arrows still applies.

Using UISF , we can create “graphical widgets” using a style very similar
to the way we wired signal functions earlier. However, instead of having
values of type SF a b, we will use values of type UISF a b. Just like SF ,
the UISF type is fully abstract (meaning its implementation is hidden) and,
being an instance of the Arrow class, can be used with arrow syntax.

17.3.1 Graphical Input and Output Widgets

Euterpea’s basic widgets are shown in Figure 17.1. Note that each of them
is, ultimately, a value of type UISF a b, for some input type a and output
type b, and therefore may be used with the arrow syntax to help coordinate
their functionality. The names and type signatures of these functions suggest
their functionality, which we elaborate in more detail below:

• A simple (static) text string can be displayed using:

label :: String → UISF a a

• Alternatively, a time-varying string can be be displayed using:

“catching up” at a later point in time. This catching up process can take an arbitrarily
long time, and may consume additional space as well. It can destroy any hope for real-time
behavior if not managed properly.
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label :: String → UISF a a
displayStr ::UISF String ()
display :: Show a ⇒ UISF a ()
withDisplay :: Show b ⇒ UISF a b → UISF a b
textbox ::UISF String String
textboxE :: String → UISF (SEvent String) String
radio :: [String ]→ Int → UISF () Int
button :: String → UISF () Bool
checkbox :: String → Bool → UISF () Bool
checkGroup :: [(String , a)]→ UISF () [a ]
listbox :: (Eq a,Show a)⇒ UISF ([a ], Int) Int
hSlider , vSlider ::RealFrac a ⇒ (a, a) → a → UISF () a
hiSlider , viSlider :: Integral a ⇒ a → (a, a) → a → UISF () a

Figure 17.1: Basic MUI Input/Output Widgets

displayStr :: UISF String ()

For convenience, Euterpea defines the following useful variations of
displayStr :

display :: Show a ⇒ UISF a ()
display = arr show >>> displayStr

withDisplay :: Show b ⇒ UISF a b → UISF a b
withDisplay sf = proc a → do

b ← sf −≺ a
display −≺ b
outA −≺ b

display allows us to display anything that is “Showable.” withDisplay
is an example of a signal function transformer : it takes a signal func-
tion and attaches a display widget to it that displays the value of its
time-varying output.

• A textbox that functions for both input and output can be created
using:

textbox :: UISF String String
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A textbox in Euterpea is notable because it is “bidirectional.” That
is, the time-varying input is displayed, and the user can interact with
it by typing or deleting, the result being the time-varying output. In
practice, the textbox is used almost exclusively with the rec keyword
and a delay operator. For example, a code snippet from a MUI that
uses textbox may look like this:

rec str ← textbox <<< delay "Initial text"−≺ str

Because of this common usage, there is a variant of the textbox:

textboxE :: String → UISF (SEvent String) String

A textboxE widget encapsulates the recursion and delay internally.
Thus, its initial value is given by its static argument, and its input
stream is an event stream that will update the displayed text when
there is an event and leave it unchanged otherwise.

• radio, button, and checkbox are three kinds of “pushbuttons.” A
button (or checkbox ) is pressed and unpressed (or checked and
unchecked) independently of others. In contrast, a radio button is de-
pendent upon other radio buttons—specifically, only one can be “on”
at a time, so pressing one will turn off the others. The string argument
to these functions is the label attached to the button. radio takes a list
of strings, each being the label of one of the buttons in the mutually-
exclusive group; indeed the length of the list determines how many
buttons are in the group.

The checkGroup widget creates a group of checkboxes. As its static
argument, it takes a list of pairs of strings and values. For each pair,
one checkbox is created with the associated string as its label. Rather
than simply returning True or False for each checked box, it returns
a list of the values associated with each label as its output stream.

• The listbox widget creates a pane with selectable text entries. The
input stream is the list of entries as well as which entry is currently
selected, and the output stream is the index of the newly selected
entry. In many ways, this widget functions much like the radio widget
except that it is stylistically different, it is dynamic, and, like the
textbox widget, it is bidirectional.

• hSlider , vSlider , hiSlider and viSlider are four kinds of “sliders”—a
graphical widget that looks like a slider control as found on a hardware
device. The first two yield floating-point numbers in a given range,
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and are oriented horizontally and vertically, respectively, whereas the
latter two return integral numbers. For the integral sliders, the first
argument is the size of the step taken when the slider is clicked at any
point on either side of the slider “handle.” In each of the four cases,
the other two arguments are the range and initial setting of the slider,
respectively.

As a simple example, here is a MUI that has a single slider representing
absolute pitch, and a display widget that displays the pitch corresponding
to the current setting of the slider:

ui0 :: UISF () ()
ui0 = proc → do

ap ← hiSlider 1 (0, 100) 0−≺ ()
display −≺ pitch ap

Note how the use of signal functions makes this dynamic MUI trivial to
write. But using the functions defines in Section 19.1.2 it can be defined
even more succinctly as:

ui0 = hiSlider 1 (0, 100) 0>>> arr pitch >>> display

We can execute this example using the function:

runMUI ′ :: UI () ()→ IO ()

So our first running example of a MUI is:

mui0 = runMUI ′ ui0

The resulting MUI, once the slider has been moved a bit, is shown in Figure
17.2(a).

Details: Any MUI widgets have the capacity to be focusable, which is particularly

relevant for graphical widgets. When a focusable widget is “in focus,” not only can

it update its appearance, but any key presses from the computer keyboard become

visible to it as input events. This means that keyboard controls are possible with

MUI widgets. Obviously, typing will affect the value of a textbox widget, but also,

for instance, the arrow keys as well as the “Home” and “End” keys will affect the

value of a slider widget. Focus can be shifted between widgets by clicking on them

with the mouse as well as by using “Tab” and “Shift+Tab” to cycle focus through

focusable widgets.
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(a) Very Simple (b) With Titles and Sizing

(c) With Alternate (left-to-right) Lay-
out

Figure 17.2: Several Simple MUIs
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title :: String → UISF a b → UISF a b
setLayout :: Layout → UISF a b → UISF a b
setSize :: (Int , Int)→ UISF a b → UISF a b
pad :: (Int , Int , Int , Int)→ UISF a b → UISF a b
topDown , bottomUp, leftRight , rightLeft :: UISF a b → UISF a b

makeLayout :: LayoutType → LayoutType → Layout
data LayoutType = Stretchy {minSize :: Int }

| Fixed {fixedSize :: Int }

Figure 17.3: MUI Layout Widget Transformers

17.3.2 Widget Transformers

Figure 17.3 shows a set of “widget transformers”—functions that take UISF
values as input, and return modified UISF values as output.

• title simply attaches a title (a string) to a UISF, and setLayout es-
tablishes a new layout for a UISF. The general way to make a new
layout is to use makeLayout , which takes layout information for first
the horizontal dimension and then the vertical. A dimension can be
either stretchy (with a minimum size in pixels but that will expand to
fill the space it is given) or fixed (measured in pixels).

The setSize function is a convenient function for setting the layout of
a widget when both dimensions need to be fixed. It is defined as:

setSize (w , h) = setLayout (makeLayout (Fixed w) (Fixed h))

For example we can modify the previous example to both set a fixed
layout for the overall widget, and attach titles to both the slider and
display:

ui1 :: UISF () ()
ui1 = setSize (150, 150) $

proc → do
ap ← title "Absolute Pitch" (hiSlider 1 (0, 100) 0)−≺ ()
title "Pitch" display −≺ pitch ap

mui1 = runMUI ′ ui1
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This MUI is shown in Figure 17.2(b).

• pad (w ,n, e, s) ui adds w pixels of space to the “west” of the UISF
ui , and n, e, and s pixels of space to the north, east, and south,
respectively.

• The remaining four functions are used to control the relative layout
of the widgets within a UISF. By default widgets are arranged top-to-
bottom, but, for example, we could modify the previous UISF program
to arrange the two widgets left-to-right:

ui2 :: UISF () ()
ui2 = leftRight $

proc → do
ap ← title "Absolute Pitch" (hiSlider 1 (0, 100) 0)−≺ ()
title "Pitch" display −≺ pitch ap

mui2 = runMUI ′ ui2

This MUI is shown in Figure 17.2(c).

Widget transformers can be nested (as demonstrated in some later ex-
amples), so a fair amount of flexibility is available.

17.3.3 MIDI Input and Output

An important application of events in Euterpea is real-time, interactive
MIDI. There are two main UISF signal functions that handle MIDI, one
for input and the other for output, but neither of them displays anything
graphically:

midiIn ::UISF (Maybe InputDeviceID)
(SEvent [MidiMessage ])

midiOut ::UISF (Maybe OutputDeviceID ,
SEvent [MidiMessage ]) ()

Except for the input and output deviceIDs (about which more will be said
shortly), these signal functions are fairly straightforward: midiOut takes a
stream of MidiMessage events and sends them to the MIDI output device
(thus a signal sink), whereas midiIn generates a stream of MidiMessage
events corresponding to the messages sent by the MIDI input device (thus
a signal source)3. In both cases, note that the events carry lists of MIDI

3Technically, this is not a proper signal source because it accepts an input stream of
Maybe InputDeviceID , but the way in which it generates MIDI messages makes it feel
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messages, thus accounting for the possibility of simultaneous events.

The MidiMessage data type is defined as:

data MidiMessage = ANote {channel :: Channel , key ::Key ,
velocity :: Velocity , duration :: Time }

| Std Message
deriving Show

A MidiMessage is either an ANote, which allows us to specify a note with
duration, or is a standard MIDI Message. MIDI does not have a notion
of duration, but rather has separate NoteOn and NoteOff messages. With
ANote, the design above is a bit more convenient, although what happens
“behind the scenes” is that each ANote is transformed into a NoteOn and
NoteOff event.

The Message data type is described in Chapter 14, and is defined in the
Codec.Midi module. Its most important functionality is summarized here:

data Message =
-- Channel Messages
NoteOff {channel :: Channel , key ::Key, velocity :: Velocity }
| NoteOn {channel :: Channel , key ::Key, velocity :: Velocity }
| ProgramChange {channel :: Channel , preset :: Preset }
| ...
-- Meta Messages
| TempoChange Tempo |
| ...
deriving (Show ,Eq)

MIDI’s notion of a “key” is the key pressed on a MIDI instrument, not
to be confused with “key” as in “key signature.” Also, MIDI’s notion of
“velocity” is the rate at which the key is pressed, and is roughly equivalent
to what we have been calling “volume.” So, for example, a MIDI message
NoteOn c k v plays MIDI key k on MIDI channel c with velocity v .

17.3.4 MIDI Device IDs

Before we can create an example using midiIn or midiOut , we first must
consider their other arguments: InputDeviceID and OutputDeviceID . The
MIDI device ID is a system-dependent concept that provides an operating
system with a simple way to uniquely identify various MIDI devices that may

very much like a source.
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be attached to a computer. Indeed, as devices are dynamically connected
and disconnected from a computer, the mapping of these IDs to a particular
device may change. Thus, the only way to get an input or output device ID
is by selection with one of the following widgets:

selectInput :: UISF () (Maybe InputDeviceID)
selectOutput :: UISF () (Maybe OutputDeviceID)

Each of these widgets automatically queries the operating system to obtain
a list of connected MIDI devices, and then displays the list as a set of radio
buttons, allowing the user to select one of them. In the event that there are
no available devices, the widget can then return Nothing .

With these functions, we can now create an example using MIDI output.
Let’s modify our previous MUI program to output an ANote message every
time the absolute pitch changes:

ui3 :: UISF () ()
ui3 = proc → do

devid ← selectOutput −≺ ()
ap ← title "Absolute Pitch" (hiSlider 1 (0, 100) 0)−≺ ()
title "Pitch" display −≺ pitch ap
uap ← unique −≺ ap
midiOut −≺ (devid , fmap (λk → [ANote 0 k 100 0.1]) uap)

mui3 = runMUI ′ ui3

The unique signal function used here is an example of a mediator, or a
signal function that mediates between continuous and discrete signals. We
will explore more mediators in Section 17.4.1, but in this case, note that
unique will generate an event whenever its input, the continuous absolute
pitch stream, changes. Each of those events, named uap above, carries the
new absolute pitch, and that pitch is used directly as the MIDI key field in
ANote.

To understand how that last part is done on the midiOut line, recall
that fmap is the primary method in the Functor class as described in Sec-
tion 7.4.3, and the Maybe type is an instance of Functor . Therefore, since
SEvent is a type synonym for Maybe, the use of fmap above is valid—and
all it does is apply the functional argument to the value “attached to” the
event, which in this case is an absolute pitch.

For an example using MIDI input as well, here is a simple program that
copies each MIDI message verbatim from the selected input device to the
selected output device:
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ui4 ::UISF () ()
ui4 = proc → do

mi ← selectInput −≺ ()
mo ← selectOutput −≺ ()
m ← midiIn −≺mi
midiOut −≺ (mo,m)

mui4 = runMUI ′ ui4

Since determining device IDs for both input and output is common, we
define a simple signal function to do both:

getDeviceIDs = topDown $
proc ()→ do
mi ← selectInput −≺ ()
mo ← selectOutput −≺ ()
outA −≺ (mi ,mo)

17.3.5 Putting It All Together

Recall that a Haskell program must eventually be a value of type IO (), and
thus we need a function to turn a UISF value into a IO value—i.e. the UISF
needs to be “run.” We can do this using one of the following two functions,
the first of which we have already been using:

runMUI ′ :: UISF () ()→ IO ()
runMUI :: UIParams → UISF () ()→ IO ()

Executing runMUI ′ ui or runMUI params ui will create a single MUI win-
dow whose behavior is governed by the argument ui :: UISF () (). The
additional UIParams argument of runMUI contains parameters that can
affect the appearance and performance of the MUI window that is created.
There is a default value of UIParams that is typical for regular MUI usage,
and runMUI ′ is defined using it:

defaultMUIParams :: UIParams
runMUI ′ = runMUI defaultMUIParams

When using runMUI , it is advisable to simply modify the default value
rather than building a whole new UIParams value. The easiest way to do
this is with Haskell’s record syntax.

There are many fields of data in a value of type UIParams , but we will
focus only on the uiTitle and uiSize, which will control the value displayed
in the title bar of the graphical window and the initial size of the window
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respectively. Thus, the title is a String value and the size is a Dimension
value (where Dimension is a type synonym for (Int , Int), which in turn
represents a width and height measured in pixels). By default, the size is
(300, 300) and the title is "MUI", but we can change these like so:

mui ′4 = runMUI (defaultMUIParams
{uiTitle = "MIDI Input / Output UI",
uiSize = (200, 200)})

ui4

This version of mui4 (from the previous subsection) will run identically to
the original except for the fact that its title will read “MIDI Input / Output
UI” and its initial size will be smaller.

17.4 Non-Widget Signal Functions

All of the signal functions we have seen so far are effectful widgets. That
is, they all do something graphical or audible when they are used. For
regular computation, we have been using pure functions (which we can insert
arbitrarily in arrow syntax or lift with arr otherwise). However, there are
signal functions that are important and useful which have no visible effects.
We will look at a few different types of these signal functions in this section.

Details: Note that the mediators and folds in the next two subsections are generic
signal functions, and are not restricted to use only in MUIs. To highlight this, we
present them with the SF type rather than the UISF type. However, they can be
(and often are) used as UISF s in MUIs.

The timers and delay functions in Subsections 17.4.3 and 17.4.4 require the MUI’s

internal notion of time, and so we present those directly with the UISF type.

17.4.1 Mediators

In order to use event streams in the context of continuous signals, Euterpea
defines a set of functions that mediate between the continuous and the dis-
crete. These “mediators,” as well as some functions that deal exclusively
with events, are shown in Figure 17.4 along with their type signatures and
brief descriptions. Their use will be better understood through some exam-
ples that follow in Section 17.5.
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unique :: Eq a ⇒ SF a (SEvent a)
-- Generates an event whenever the input changes

edge :: SF Bool (SEvent ())
-- Generates an event whenever the input changes from False to True

hold :: a → SF (SEvent a) a
-- hold x begins as value x , but changes to the subsequent values
-- attached to each of its input events

accum :: a → SF (SEvent (a → a)) a
-- accum x starts with the value x , but then applies the function
-- attached to the first event to x to get the next value, and so on

now :: SF () (SEvent ())
-- Creates a single event “now” and forever after does nothing.

evMap :: SF a b → SF (SEvent a) (SEvent b)
-- Lifts a continuous signal function into one that handles events

mergeE :: (a → a → a)→ SEvent a → SEvent a → SEvent a
-- mergeE f e1 e2 merges two events, using f to resolve two Just values

(∼++) :: SEvent [a ]→ SEvent [a ]→ SEvent [a ]
-- An infix specialization of mergeE to lists

(∼++) = mergeE (++)

Figure 17.4: Mediators Between the Continuous and the Discrete
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17.4.2 Folds

In traditional functional programming, a folding, or reducing, operation is
one that joins together a set of data. The typical case would be an operation
that operates over a list of data, such as a function that sums all elements
of a list of numbers.

There are a few different ways given in Euterpea to fold together signal
functions to create new ones:

maybeA :: SF () c → SF b c → SF (Maybe b) c
concatA :: [SF b c ]→ SF [b ] [c ]
runDynamic :: SF b c → SF [b ] [c ]

• maybeA is a fold over the Maybe (or SEvent) data type. The signal
function maybeA n j accepts as input a stream of Maybe b values; at
any given moment, if those values are Nothing , then the signal function
behaves like n, and if they are Just b, then it behaves like j .

• The concatA fold takes a list of signal functions and converts them to
a single signal function whose streaming values are themselves lists.
For example, perhaps we want to display a bunch of buttons to a user
in a MUI window. Rather than coding them in one at a time, we
can use concatA to fold them into one operation that will return their
results altogether in a list. In essence, we are concatenating the signal
functions together.

• The runDynamic signal function is similar to concatA except that it
takes a single signal function as an argument rather than a list. What,
then, does it fold over? Instead of folding over the static signal function
list, it folds over the [b ] list that it accepts as its input streaming
argument.

The concatA and runDynamic signal functions are definitely similar, but
they are also subtly different. With concatA, there can be many different
signal functions that are grouped together, but with runDynamic, there
is only one. However, runDynamic may have a variable number of inter-
nally running signal functions at runtime because that number depends on
a streaming argument. concatA is fixed once it is created.
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17.4.3 Timers

The Euterpea MUI has an implicit notion of elapsed time, but it can be
made explicit by the following signal source:

getTime ::UISF () Time

where Time is a type synonym for Double.

Although the explicit time may be desired, some MUI widgets depend
on the time implicitly. For example, the following signal function creates a
timer :

timer :: UISF DeltaT (SEvent ())

In practice, timer −≺ i takes a signal i that represents the timer interval
(in seconds), and generates an event stream, where each pair of consecutive
events is separated by the timer interval. Note that the timer interval is
itself a signal, so the timer output can have varying frequency.

To see how a timer might be used, let’s modify our MUI working example
from earlier so that, instead of playing a note every time the absolute pitch
changes, we will output a note continuously, at a rate controlled by a second
slider:

ui5 :: UISF () ()
ui5 = proc → do

devid ← selectOutput −≺ ()
ap ← title "Absolute Pitch" (hiSlider 1 (0, 100) 0)−≺ ()
title "Pitch" display −≺ pitch ap
f ← title "Tempo" (hSlider (1, 10) 1)−≺ ()
tick ← timer −≺ 1/f
midiOut −≺ (devid , fmap (const [ANote 0 ap 100 0.1]) tick)

-- Pitch Player with Timer
mui5 = runMUI ′ ui5

Note that the rate of ticks is controlled by the second slider—a larger slider
value causes a smaller time between ticks, and thus a higher frequency, or
tempo.

In some cases, the simple unit events of the timer are not enough.
Rather, we would like each event to be different while we progress through
a predetermined sequence. To do this, we can use the genEvents signal
function:

genEvents :: [b ]→ UISF DeltaT (SEvent b)

Just like timer , this signal function will output events at a variable frequency,
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but each successive event will contain the next value in the given list. When
every value of the list lst has been emitted, genEvents lst will never again
produce an event.

17.4.4 Delays

Another way in which a widget can use time implicitly is in a delay. Euterpea
comes with five different delaying widgets, which each serve a specific role
depending on whether the streams are continuous or event-based and if the
delay is a fixed length or can be variable:

delay :: b → UISF b b
fcdelay :: b → DeltaT → UISF b b
fdelay :: DeltaT → UISF (SEvent b) (SEvent b)
vdelay :: UISF (DeltaT ,SEvent b) (SEvent b)
vcdelay :: DeltaT → b → UISF (DeltaT , b) b

To start, we will examine the most straightforward one. The delay func-
tion creates what is called a “unit delay”, which can be thought of as a
delay by the shortest amount of time possible. This delay should be treated
in the same way that one may treat a δt in calculus; that is, although one
can assume that a delay takes place, the amount of time delayed approaches
zero. Thus, in practice, this should be used only in continuous cases and
should only be used as a means to initialize arrow feedback.

The rest of the delay operators delay by some amount of actual time,
and we will look at each in turn. fcdelay b t will emit the constant value b
for the first t seconds of the output stream and will from then on emit its
input stream delayed by t seconds. The name comes from “fixed continuous
delay.”

One potential problem with fcdelay is that it makes no guarantees that
every instantaneous value on the input stream will be seen in the output
stream. This should not be a problem for continuous signals, but for an
event stream, it could mean that entire events are accidentally skipped over.
Therefore, there is a specialized delay for event streams: fdelay t guarantees
that every input event will be emitted, but in order to achieve this, it is not
as strict about timing—that is, some events may end up being over delayed.
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Due to the nature of events, we no longer need an initial value for output:
for the first t second, there will simply be no events emitted.

We can make both of the above delay widgets a little more complicated
by introducing the idea of a variable delay. For instance, we can expand
the capabilities of fdelay into vdelay . Now, the delay time is part of the
signal, and it can change dynamically. Regardless, this event-based version
will still guarantee that every input event will be emitted. “vdelay” can be
read “variable delay.”

For the variable continuous version, we must add one extra input param-
eter to prevent a possible space leak. Thus, the first argument to vcdelay
is the maximum amount that the widget can delay. Due to the variable
nature of vcdelay , some portions of the input signal may be omitted entirely
from the output signal while others may even be outputted more than once.
Thus, once again, it is highly advised to use vdelay rather than vcdelay when
dealing with event-based signals.

17.5 Musical Examples

In this section we work through three larger musical examples that use
Euterpea’s MUI in interesting ways.

17.5.1 Chord Builder

This MUI will display a collection of chord types (Maj, Maj7, Maj9, min,
min7, min9, and so on), one of which is selectable via a radio button. Then
when a key is pressed on a MIDI keyboard, the selected chord is built and
played using that key as the root.

To begin, we define a “database” that associates chord types with their
intervals starting with the root note:

chordIntervals :: [(String , [Int ])]
chordIntervals = [("Maj", [4, 3, 5]), ("Maj7", [4, 3, 4, 1]),

("Maj9", [4, 3, 4, 3]), ("Maj6", [4, 3, 2, 3]),
("min", [3, 4, 5]), ("min7", [3, 4, 3, 2]),
("min9", [3, 4, 3, 4]), ("min7b5", [3, 3, 4, 2]),
("mMaj7", [3, 4, 4, 1]), ("dim", [3, 3, 3]),
("dim7", [3, 3, 3, 3]), ("Dom7", [4, 3, 3, 2]),
("Dom9", [4, 3, 3, 4]), ("Dom7b9", [4, 3, 3, 3])]
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We will display the list of chords on the screen as radio buttons for the user
to click on.

The toChord function takes an input MIDI message as the root note,
and the index of the selected chord, and outputs the notes of the selected
chord.

toChord :: Int → MidiMessage → [MidiMessage ]
toChord i m =

case m of
Std (NoteOn c k v) → f NoteOn c k v
Std (NoteOff c k v) → f NoteOff c k v
→ [ ]

where f g c k v = map (λk ′ → Std (g c k ′ v))
(scanl (+) k (snd (chordIntervals !! i)))

Details: scanl :: (a → b → a) → a → [b ] → [a ] is a standard Haskell function

that is like foldl :: (a → b → a)→ a → [b ] → a, except that every intermediate

result is returned, collected together in a list.

The overall MUI is laid out in the following way: On the left side, the list
of input and output devices are displayed top-down. On the right is the list
of chord types. We take the name of each chord type from the chordIntervals
list to create the radio buttons.

When a MIDI input event occurs, the input message and the currently
selected index to the list of chords is sent to the toChord function, and the
resulting chord is then sent to the Midi output device.

buildChord :: UISF () ()
buildChord = leftRight $

proc → do
(mi ,mo)← getDeviceIDs −≺ ()
m ← midiIn −≺mi
i ← topDown $ title "Chord Type" $

radio (fst (unzip chordIntervals)) 0−≺ ()
midiOut −≺ (mo, fmap (concatMap $ toChord i) m)

chordBuilder = runMUI (defaultMUIParams
{uiTitle = "Chord Builder",
uiSize = (600, 400)})
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buildChord

Details: unzip :: [(a, b)] → ([a ], [b ]) is a standard Haskell function that does
the opposite of zip :: [a ]→ [b ]→ [(a, b)].

concatMap :: (a → [b ]) → [a ] → [b ] is another standard Haskell function that

acts as a combination of map and concat . It maps the given function over the

given list and then concatenates all of the outputs into a single output list.

Figure 17.5 shows this MUI in action.

Figure 17.5: A Chord Builder MUI

17.5.2 Chaotic Composition

In this section we describe a UISF that borrows some ideas from Gary Lee
Nelson’s composition “Bifurcate Me, Baby!” [Nel95].

The basic idea is to evaluate a formula called the logistic growth function,
from a branch of mathematics called chaos theory, at different points and
convert the values to musical notes. The growth function is given by the
recurrence equation:

xn+1 = rxn(1− xn)
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Mathematically, we start with an initial population x0 and iteratively
apply the growth function to it, where r is the growth rate. For certain
values of r, the population stabilizes to a certain value, but as r increases,
the period doubles, quadruples, and eventually leads to chaos. It is one of
the classic examples of chaotic behavior.

We can capture the growth rate equation above in Haskell by defining a
function that, given a rate r and current population x , generates the next
population:

grow :: Double → Double → Double
grow r x = r ∗ x ∗ (1− x )

To generate a time-varying population, the accum signal function comes
in handy. accum is one of the mediators mentioned in Section 17.4.1: it
takes an initial value and an event signal carrying a modifying function, and
it updates the current value by applying the function to it.

...
r ← title "Growth rate" $ withDisplay (hSlider (2.4, 4.0) 2.4)−≺ ()

pop ← accum 0.1−≺ fmap (const (grow r)) tick
...

The tick above is the “clock tick” that drives the simulation. We wish to
define a signal tick that pulsates at a given frequency specified by a slider.

...
f ← title "Frequency" $ withDisplay (hSlider (1, 10) 1)−≺ ()

tick ← timer −≺ 1/f
...

We also need a simple function that maps a population value to a musical
note. As usual, this can be done in a variety of ways—here is one way:

popToNote :: Double → [MidiMessage ]
popToNote x = [ANote 0 n 64 0.05]

where n = truncate (x ∗ 127)

Finally, to play the note at every tick, we simply apply popToNote to
every value in the time-varying population pop. fmap makes this straight-
forward. Putting it all together, we arrive at:

bifurcateUI :: UISF () ()
bifurcateUI = proc → do

mo ← selectOutput −≺ ()
f ← title "Frequency" $ withDisplay (hSlider (1, 10) 1)−≺ ()
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tick ← timer −≺ 1/f
r ← title "Growth rate" $ withDisplay (hSlider (2.4, 4.0) 2.4)−≺ ()
pop ← accum 0.1−≺ fmap (const (grow r)) tick
← title "Population" $ display −≺ pop

midiOut −≺ (mo, fmap (const (popToNote pop)) tick)

bifurcate = runMUI (defaultMUIParams
{uiTitle = "Bifurcate!",
uiSize = (300, 500)})

bifurcateUI

17.5.3 MIDI Echo Effect

As a final example we present a program that receives a MIDI event stream
and, in addition to playing each note received from the input device, it also
echoes the note at a given rate, while playing each successive note more
softly until the velocity reduces to 0.

The key component we need for this problem is a delay function that
can delay a given event signal for a certain amount of time. Recall that the
function vdelay takes a time signal, the amount of time to delay, and an
input signal, and returns a delayed version of the input signal.

There are two signals we want to attenuate, or “decay.” One is the signal
coming from the input device, and the other is the delayed and decayed signal
containing the echoes. In the code shown below, they are denoted as m and
s, respectively. First we merge the two event streams into one, and then
remove events with empty MIDI messages by replacing them with Nothing.
The resulting signal m ′ is then processed further as follows.

The MIDI messages and the current decay rate are processed with decay ,
which softens each note in the list of messages. Specifically, decay works by
reducing the velocity of each note by the given rate and removing the note if
the velocity drops to 0. The resulting signal is then delayed by the amount
of time determined by another slider f , producing signal s. Signal s is then
merged with m in order to define m ′ (recall from Section17.4.1 that ∼++
merges to event lists), thus closing the loop of the recursive signal. Finally,
m ′ is sent to the output device.

echoUI :: UISF () ()
echoUI = proc → do

(mi ,mo)← getDeviceIDs −≺ ()
m ← midiIn −≺mi
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r ← title "Decay rate" $ withDisplay (hSlider (0, 0.9) 0.5)−≺ ()
f ← title "Echoing frequency" $ withDisplay (hSlider (1, 10) 10)−≺ ()

rec s ← vdelay −≺ (1/f , fmap (mapMaybe (decay 0.1 r)) m ′)
let m ′ = m ∼++ s

midiOut −≺ (mo,m ′)

echo = runMUI ′ echoUI

decay :: Time → Double → MidiMessage → Maybe MidiMessage
decay dur r m =

let f c k v d = if v > 0
then let v ′ = truncate (fromIntegral v ∗ r)

in Just (ANote c k v ′ d)
else Nothing

in case m of
ANote c k v d → f c k v d
Std (NoteOn c k v)→ f c k v dur

→ Nothing

17.6 Special Purpose and Custom Widgets

Although the widgets and signal functions described so far enable the cre-
ation of many basic MUIs, there are times when something more specific is
required. Thus, in this section, we will look at some special purpose widgets
as well as some functions that aid in the creation of custom widgets.

Some of the functions described in this subsection are included in Eu-
terpea by default, but others require extra imports of specific Euterpea
modules. We will note this where applicable.

17.6.1 Realtime graphs, histograms

So far, the only way to display the value of a stream in the MUI is to use
the display widget. Although this is often enough, there may be times when
another view is more enlightening. For instance, if the stream represents
a sound wave, then rather than displaying the instantaneous values of the
wave as numbers, we may wish to see them graphed.

Euterpea provides support for a few different widgets that will graph
streaming data visually.

realtimeGraph ::RealFrac a ⇒ Layout
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→ Time → Color → UISF [(a,Time)] ()
histogram ::RealFrac a ⇒ Layout

→ UISF (SEvent [a ]) ()
histogramWithScale ::RealFrac a ⇒ Layout

→ UISF (SEvent [(a,String)]) ()

Note that each of these three functions requires a Layout argument (recall
the Layout data type from Section 17.3.2); this is because the layout of a
graph is not as easily inferred as that for, say, a button.

We will walk through the descriptions of each of these widgets:

• realtimeGraph l t c will produce a graph widget with layout l . This
graph will accept as input a stream of events of pairs of values and
time4. The values are plotted vertically in color c, and the horizon-
tal axis represents time, where the width of the graph represents an
amount of time t .

• The histogram widgets’ input are events that each contain a complete
set of data. The data are plotted as a histogram within the given
layout. For the histogram with the scale, each value must be paired
with a String representing its label, and the labels are printed under
the plot.

These widgets will prove useful when we are dealing with sound signals
directly in future chapters.

17.6.2 More MIDI Widgets

In Sections 17.3.3 and 17.3.4, we presented simple widgets for selecting de-
vices and polling and playing midi messages. However, these widgets allow
for only one input device and one output device at a time. For a more com-
plex scenario where multiple devices are to be used simultaneously, we have
the following four widgets:

midiInM ::UISF [InputDeviceID ] (SEvent [MidiMessage ])
midiOutM ::UISF [(OutputDeviceID ,SEvent [MidiMessage ])] ()
selectInputM ::UISF () [InputDeviceID ]
selectOutputM ::UISF () [OutputDeviceID ]

4These events are represented as a list rather than using the SEvent type because
there may be more than one event at the same time. The absence of any events would be
indicated by an empty list.
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The M on the end can be read as “Multiple.” These widgets can be used
just like their singular counterparts to handle MIDI, except that they allow
for multiple simultaneous device usage.

We can add even more behavior into the midi output widgets by con-
sidering a buffered output. When using midiOut (or midiOutM ), all of the
MIDI messages sent to the device are immediately played, but sometimes,
we would prefer to queue messages up for playback later. We can do this
with the following two midi output widgets:

midiOutB :: UISF (Maybe OutputDeviceID ,
BufferOperation MidiMessage) Bool

midiOutMB :: UISF [(OutputDeviceID ,
BufferOperation MidiMessage)] Bool

Notice that these two widgets have a Bool output stream; this stream is
True when the buffer is empty and there is nothing queued up to play and
False otherwise. The BufferOperation data type gives information along
with the MIDI messages about when or how to play the messages. It is
defined as follows:

data BufferOperation b =
NoBOp
| ClearBuffer
| SkipAheadInBuffer DeltaT
| MergeInBuffer [(DeltaT , b)]
| AppendToBuffer [(DeltaT , b)]
| SetBufferPlayStatus Bool (BufferOperation b)
| SetBufferTempo Tempo (BufferOperation b)

where

• NoBOp indicates that there is no new information for the buffer.

• ClearBuffer erases the current buffer.

• SkipAheadInBuffer t skips ahead in the buffer by t seconds.

• MergeInBuffer ms merges messages ms into the buffer to play concur-
rently with what is currently playing.

• AppendToBuffer ms adds messages ms to the end of the buffer to play
immediately following whatever is playing.

• SetBufferPlayStatus p b indicates whether the buffer should be playing
(True) or paused (False).



CHAPTER 17. MUSICAL USER INTERFACE 277

• SetBufferTempo t b sets the play speed of the buffer to t (the default
is 1, indicating realtime).

Note that the final two options recursively take a buffer operation, mean-
ing that they can be attached to any other buffer operation as additional
modifications.

Details: The midiOutB and midiOutMB widgets are essentially the regular

midiOut widgets connected to an eventBuffer . The eventBuffer signal function

can also be used directly to buffer any kind of data that fits into the BufferOperation

format. It can be brought into scope by importing FRP.UISF.AuxFunctions.

In practice, the most common time to use the buffered midi output
widgets as opposed to the regular ones is when dealing with Music values.
Thus, Euterpea.IO.MUI.MidiWidgets also exports the following function:

musicToMsgs ::Maybe [InstrumentName ]→ Music1
→ [(DeltaT ,MidiMessage)]

The first argument should be a Just value if the Music1 value is infinite and
Nothing otherwise. If it is a Just value, then its value should be the override
for the instrument channels.

The musicToMsgs function will convert a Music1 value into a format
that can be easily sent to the buffered midi widget. Once converted in this
way, it can be wrapped by MergeInBuffer or AppendToBuffer to be sent to
the buffer.

17.6.3 Virtual Instruments

Euterpea provides two special widgets that create virtual instruments that
the user can interact with: a piano and a guitar. These two widgets are not
fully supported by Euterpea at present, so to bring them into scope, we will
need to import Euterpea.Experimental.

import Euterpea.Experimental
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Details: Euterpea’s Experimental package contains functions and features that

are still in process. They may be unreliable, and they are likely to change in future

versions of Euterpea. Thus, feel free to experiment with them, but use them with

caution.

The piano and guitar are virtual instruments in the MUI that look and
behave like a piano keyboard or guitar strings: the strings can be plucked or
the piano keys pressed with either the mouse or keyboard, and the output
is in the form of MIDI messages. Note that these widgets do not actually
produce any sound. Thus, in most cases, the output should then be sent to
a MIDI output widget.

The two widgets have the following similar types:

guitar ::GuitarKeyMap → Midi .Channel
→ UISF (InstrumentData ,SEvent [MidiMessage ])

(SEvent [MidiMessage ])
piano :: PianoKeyMap → Midi .Channel

→ UISF (InstrumentData ,SEvent [MidiMessage ])
(SEvent [MidiMessage ])

Given a key mapping and a MIDI channel, the functions make the virtual
instrument widgets. The widgets themselves accept an InstrumentData ar-
gument, which contains some settings for the instrument, and a stream of
input MIDI messages, and they produce a stream of MIDI messages. They
do not make any sound themselves—these widgets are purely visual.

Let’s look at how these widgets work in a little more detail. First, the
widgets take a key map, either a GuitarKeyMap or a PianoKeyMap. These
maps indicate what keyboard keys one can use to play the instruments
with a standard computer keyboard. These are customizable values, but we
provide a couple for use with a qwerty keyboard:

• defaultMap1 treats the characters from Q to U as one octave from C2
to B3. The black notes are predictably at 2, 3, 5, 6, and 7. Holding
a shift key while pressing the same keys plays the notes one octave
higher.

• defaultMap2 is the same as defaultMap1 except that it uses the bottom
two rows of the keyboard, with Z through M as the white keys and S
through J (but not F) as black keys. Once again, hold shift for the
higher octave.
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• defaultMap0 is for a four octave keyboard and uses both maps in se-
quence.

For the guitar, we provide sixString , a mapping using the first six columns
of keys (e.g. 1, Q, A, Z would be the first column) to represent the six
strings of the guitar.

The next argument to making a virtual instrument widget is a MIDI
channel. Because they can create MIDI messages from just a mouse click,
these widgets need information about what MIDI channel the messages
should use. The Midi .Channel type is brought in from Codec.Midi , and
it is a type synonym for Int—really, any number from 0 to 127 is proba-
bly an okay candidate, but it depends on what channels your MIDI devices
support.

The streaming input to the widgets includes both MIDI messages (which
will visually “play” on the instrument) as well as a value of InstrumentData .
By default, one should use the value defaultInstrumentData , but this can be
modified with the following three widgets:

addNotation :: UISF InstrumentData InstrumentData
addTranspose :: UISF InstrumentData InstrumentData
addPedal :: UISF InstrumentData InstrumentData

Each one will create a checkbox or slider to allow for adding notation (visual
text that indicates what keys are what on the instrument), transposition (the
ability to raise or lower the notes by some amount) or pedal (only used for
the piano).

Now that we have some idea of how the widgets work, let’s create a
sample MUI that uses them both.

gAndPUI :: UISF () ()
gAndPUI = proc → do

(mi ,mo)← getDeviceIDs −≺ ()
m ← midiIn −≺mi
settings ← addNotation −≺ defaultInstrumentData
outG ← guitar sixString 1 −≺ (settings ,Nothing)
outP ← piano defaultMap0 0−≺ (settings ,m)
midiOut −≺ (mo, outG ∼++ outP)

gAndP = runMUI (defaultMUIParams {uiSize = (1050, 700),
uiTitle = "Guitar and Piano"})

gAndPUI
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This MUI will provide a checkbox for whether it should display notation
or not and then shows both virtual instruments. Any messages played on
the input MIDI device will be shown and heard as if played on the virtual
piano.

17.6.4 A Graphical Canvas

In addition to the standard musical widgets, the musical user interface pro-
vides support for arbitrary graphical output. It does this via the canvas
widget, which allows the user to “paint” graphics right into the MUI:

canvas :: Dimension → UISF (Event Graphic) ()
canvas ′ :: Layout → (a → Dimension → Graphic)→ UISF (Event a) ()

The main canvas widget takes a fixed size and displays in the MUI the most
recent Graphic it received. The canvas ′ function is a little more complex as
it can handle a changing size: rather than a fixed dimension, it accepts a
layout and a function that, when given the dimension (which is generated
at runtime based on the window size), can produce the appropriate graphic.

In either case, the user is responsible for generating the graphic that
should be shown by generating a value of type Graphic. However, Euterpea
does not export Graphic constructors by default, so we will need to add the
following import to our file:

import FRP .UISF .SOE

The name of this import, SOE, comes from the book The Haskell School of
Expression, the predecessor to this text. Rather than go into detail about
the various types of graphics one can create with this import, we will leave
it to the reader to read this other text or to look at the documentation
directly. Instead, we will only point out three functions as we will use them
in our upcoming example:

polygon :: [(Int , Int)]→ Graphic
rgb :: Int → Int → Int → RGB
withColor ′ :: RGB → Graphic → Graphic

The polygon function takes a list of points and constructs a polygon treating
them as vertices, the rgb function produces an RGB color from red, green,
and blue values, and withColor ′ applies the given RGB color to the given
Graphic .

In the following example, we will create three sliders to control the red,
green, and blue values, and then we will use these to create a simple color
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swatch out of the canvas widget.

colorSwatchUI :: UISF () ()
colorSwatchUI = setSize (300, 220) $ pad (4, 0, 4, 0) $ leftRight $

proc → do
r ← newColorSlider "R"−≺ ()
g ← newColorSlider "G"−≺ ()
b ← newColorSlider "B"−≺ ()
e ← unique −≺ (r , g , b)
let rect = withColor ′ (rgb r g b) (box ((0, 0), d))
pad (4, 8, 0, 0) $ canvas d −≺ fmap (const rect) e

where
d = (170, 170)
newColorSlider l = title l $ withDisplay $ viSlider 16 (0, 255) 0
box ((x , y), (w , h)) =

polygon [(x , y), (x + w , y), (x + w , y + h), (x , y + h)]

colorSwatch = runMUI ′ colorSwatchUI

We use the polygon function to create a simple box, and then we color
it with the data from the sliders. Whenever the color changes, we redraw
the box by sending a new Graphic event to the canvas widget.

17.6.5 [Advanced] mkWidget

In some cases, even the canvas widget is not powerful enough, and we would
like to create our own custom widget. For this, there is the mkWidget
function. To bring this into scope, we must import UISF’s widget module
directly:

import FRP .UISF .Widget (mkWidget)

The type of mkWidget is as follows:

mkWidget :: s
→ Layout
→ (a → s → Rect → UIEvent → (b, s,DirtyBit))
→ (Rect → Bool → s → Graphic)
→ UISF a b

This widget building function takes arguments particularly desgined to make
a realtime, interactive widget. The arguments work like so:

• The first argument is an initial state for the widget. The widget will
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be able to internally keep track of state, and the value that it should
start with is given here.

• The second argument is the layout of the widget.

• The third argument is the computation that this layout performs.
Given an instantaneous value of the streaming input, the current state,
the rectangle describing the current allotted dimensions, and the cur-
rent UIEvent5, it should produce an output value, a new state, and
a DirtyBit , which is a boolean value indicating whether the visual
representation of the widget will change.

• The final argument is the drawing routine. Given the rectangle de-
scribing the current allotted dimensions for the widget (the same as
given to the computation function), a boolean indicating whether this
widget is in focus, and the state, it produces the graphic that this
widget will appear as.

The specifics of mkWidget are beyond the scope of this text, and those
interested in making their own widgets are encouraged to look at the doc-
umentation of the UISF package. However, as a demonstration of its use,
here we will show the definition of canvas using mkWidget .

canvas (w , h) = mkWidget nullGraphic layout process draw
where
layout = makeLayout (Fixed w) (Fixed h)
draw ((x , y), (w , h)) = translateGraphic (x , y)
process (Just g) = ((), g ,True)
process Nothing g = ((), g ,False)

17.7 Advanced Topics

In the final section of this chapter, we will explore some advanced topics
related to the MUI.

17.7.1 Banana brackets

When dealing with layout, we have so far shown two ways to apply the
various layout transformers (e.g. topDown , leftRight , etc.) to signal func-

5The UIEvent can contain information like mouse clicks or key presses. For complete
documentation on UIEvent , look to the FRP.UISF documentation.
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tions. One way involves using the transformer on the whole signal function
by applying it on the first line like so:

... = leftRight $ proc → do ...

The other option is to apply the transformation in-line for the signal function
it should act upon:

...
x ← topDown mySF −≺ y

...

However, the situation is not so clear cut, and at times, we may want a
sub-portion of our signal function to have a different layout flow than the
rest.

For example, assume we have a signal function that should have four
buttons. The second and third buttons should be left-right aligned, but
vertically, they together should be between the first and second. One way
we may try to write this is like so:

ui6 = topDown $ proc → do
b1 ← button "Button 1"−≺ ()
(b2, b3)← leftRight (proc → do
b2 ← button "Button 2"−≺ ()
b3 ← button "Button 3"−≺ ()
returnA −≺ (b2, b3))−≺ ()

b4 ← button "Button 4"−≺ ()
display −≺ b1 ∨ b2 ∨ b3 ∨ b4

This looks a little funny, especially because we have an extra arrow tail (the
−≺ part) after the inner returnA on the sixth line, but it gets the job done.

However, what if we wanted to do something with the value b1 within
the inner proc part? In its current state, b1 is not in scope in there. We
can add it to the scope, but we would have to explicitly accept that value
from the outer scope. It would look like so:

ui ′6 = topDown $ proc → do
b1 ← button "Button 1"−≺ ()
(b2, b3)← leftRight (proc b1 → do
b2 ← button "Button 2"−≺ ()
display −≺ b1
b3 ← button "Button 3"−≺ ()
returnA −≺ (b2, b3))−≺ b1

b4 ← button "Button 4"−≺ ()



CHAPTER 17. MUSICAL USER INTERFACE 284

display −≺ b1 ∨ b2 ∨ b3 ∨ b4

This is getting hard to deal with! Fortunately, there is an arrow syntax
feature to help us with this known as banana brackets.

Banana brackets are a component of the arrow syntax that allows one to
apply a function to one or more arrow commands without losing the scope
of the arrow syntax. To use, one writes in the form:

(| f cmd1 cmd2... |)
where f is a function on arrow commands and cmd1, cmd2, etc. are arrow
commands.

Details: An arrow command is the portion of arrow syntax that contains the

arrow and the input but not the binding to output. Generally, this looks like

sf −≺ x , but if it starts with do, then it can be an entire arrow in itself (albeit,

one that does not start with proc →).

Banana brackets preserve the original arrow scope, so we can rewrite our
example to:

ui ′′6 = proc ()→ do
b1 ← button "Button 1"−≺ ()
(b2, b3)← (| leftRight (do
b2 ← button "Button 2"−≺ ()
display −≺ b1
b3 ← button "Button 3"−≺ ()
returnA −≺ (b2, b3)) |)

b4 ← button "Button 4"−≺ ()
display −≺ b1 ∨ b2 ∨ b3 ∨ b4

Note that we no longer need the proc → in the third line nor do we have
an arrow tail on the seventh line. That said, banana brackets do have a
limitation in that the variables used internally are not exposed outside; that
is, we still need the seventh line to explicitly return b2 and b3 in order to
bind them to the outer scope in the third line so that they are visible when
displayed on the last line.
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17.7.2 General I/O From Within a MUI

So far, through specific widgets, we have shown how to perform specific
effects through the MUI: one can poll MIDI devices, send MIDI output,
display graphics on the screen, and so on. However, the MUI is capable of
arbitrary IO actions. In general, arbitrary IO actions can be dangerous, so
the functions that allow them are relegated to Euterpea.Experimental, and
they should be used with care.

The first arbitrary IO arrow to consider is:

initialAIO :: IO d → (d → UISF b c)→ UISF b c

This function allows an IO action to be performed upon MUI initialization,
the result of which is used to finish constructing the widget. Thus, its name
can be read as “initial Arrow IO.”

In practice one might use initialAIO to do something like read the con-
tents of a file to be used at runtime. For instance, if we had a file called
“songData” that contained data we would like to use in the MUI, we could
use the following function:

initialAIO (readFile "songData")
(λx → now >>> arr (fmap $ const x ))

::UISF () (SEvent String)

This function will read the file and then produce a single event containing
the contents of the file when the MUI first starts.

Performing an initial action is simple and useful, but at times, we would
like the freedom to perform actions mid-execution as well, and for that, we
have the following six functions:

uisfSource :: IO c → UISF () c
uisfSink :: (b → IO ())→ UISF b ()
uisfPipe :: (b → IO c) → UISF b c
uisfSourceE :: IO c → UISF (SEvent ()) (SEvent c)
uisfSinkE :: (b → IO ())→ UISF (SEvent b) (SEvent ())
uisfPipeE :: (b → IO c) → UISF (SEvent b) (SEvent c)

The first three of these are for continuous-type actions and the last three are
for event-based actions. As an example of a continuous action, one could
consider a stream of random numbers:

uisfSource randomIO :: Random r ⇒ UISF () r

Most IO actions are better handled by the event-based functions. For
instance, we could update our file reading widget from earlier so that it is
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capable of reading a dynamically named file, and it can perform more than
one read at runtime:

uisfPipeE readFile :: UISF (SEvent FilePath) (SEvent String)

Whenever this signal function is given an event containing a file, it reads
the file and returns an event containing the contents.

Details: This sort of arbitrary IO access that the functions from this subsection

allow can have negative effects on a program ranging from unusual behavior to per-

formance problems to crashing. Research has been done to handle these problems,

and a promising solution using what are called resource types has been proposed

[WCLH11, WCH12]. However, Euterpea does not implement resource types, so it

is left to the programmer to be exceptionally careful to use these appropriately.

17.7.3 Asynchrony

Although we have discussed the MUI as being able to act both continuously
and discretely (event-based) depending on the required circumstances, in
actual fact, the system is entirely built in a discrete way. When run, the
MUI does many calculations per second to create the illusion of continuity,
and as long as this sample rate is high enough, the illusion persists without
any problem.

However, there are two primary ways in which the illusion of continuity
fails:

• Computations can be sensitive to the sampling rate itself such that a
low enough rate will cause poor behavior.

• Computations can be sensitive to the variability of the sampling rate
such that drastic differences in the rate can cause poor behavior.

These are two subtly different problems, and we will address both with
subtly different forms of asynchrony.

The idea of using asynchrony is to allow these sensitive computations
to run separately from the MUI process so that they are unaffected by the
MUI’s sampling rate and are allowed to set and use their own arbitrary rate.
We achieve this with the following functions:

asyncUISFE ◦ toAutomaton :: NFData b ⇒
SF a b → UISF (SEvent a) (SEvent b)
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clockedSFToUISF :: (NFData b,Clock c)⇒
DeltaT → SigFun c a b → UISF a [(b,Time)]

Note that the SF and SigFun types will be discussed further in Chapter 19),
but they are both arrows, and thus we can lift pure functions of type a → b
to them with the arr function. These two functions are designed to address
the two different sampling rate pitfalls we raised above.

• asyncUISFE ◦ toAutomaton is technically a composition of two func-
tions, but in Euterpea, it would be rare to use them apart. Together,
they are used to deal with the scenario where a computation takes a
long time to compute (or perhaps blocks internally, delaying its com-
pletion). This slow computation may have deleterious effects on the
MUI, causing it to become unresponsive and slow, so we allow it to
run asynchronously. The computation is lifted into the discrete, event
realm, and for each input event given to it, a corresponding output
event will be created eventually. Of course, the output event will likely
not be generated immediately, but it will be generated eventually, and
the ordering of output events will match the ordering of input events.

• The clockedSFToUISF function can convert a signal function with a
fixed, virtual clockrate to a realtime UISF. The first input parameter
is a buffer size in seconds that indicates how far ahead of real time
the signal function is allowed to get, but the goal is to allow it to run
at a fixed clockrate as close to realtime as possible. Thus, the output
stream is a list of pairs providing the output values along with the
timestamp for when they were generated. This should contain the
right number of samples to approach real time, but on slow computers
or when the virtual clockrate is exceptionally high, it will lag behind.
This can be checked and monitored by checking the length of the
output list and the time associated with the final element of the list
on each time step.

Rather than show an example here, we will wait until Chapter 20 once the
SigFun type has been introduced. An example that uses clockedSFToUISF
can be found at the end of the chapter in Figure 20.5

Exercise 17.1 Define a MUI that has a text box in which the user can
type a pitch using the normal syntax (C , 4), (D , 5), etc., and a pushbutton
labelled “Play” that, when pushed, will play the pitch appearing in the
textbox.
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Hint: use the Haskell function reads :: Read a ⇒ String → [(a,String)]
to parse the input.

Exercise 17.2 Modify the previous example so that it has two textboxes,
and plays both notes simultaneously when the pushbutton is pressed.

Exercise 17.3 Modify the previous example so that, in place of the push-
button, the pitches are played at a rate specified by a horizontal slider.

Exercise 17.4 Define a MUI for a pseudo-keyboard that has radio buttons
to choose one of the 12 pitches in the conventional chromatic scale. Every
time a new pitch is selected, that note is played.

Exercise 17.5 Modify the previous example so that an integral slider is
used to specify the octave in which the pitch is played.

Exercise 17.6 Leon Gruenbaum describes a “Samchillian Tip Tip Tip Cheeepeeeee,”
a MIDI keyboard based on intervals rather than fixed pitches. Your job is
to define a “Cheepie Samchillian” as a MUI that has the following features:

• A three-element radio button to choose between three scales: chro-
matic, major, and whole-tone.

• Nine pushbuttons, corresponding to intervals (within the selected scale)
of 0, +1, +2, +3, +4, -1, -2, -3, and -4.



Chapter 18

Sound and Signals

In this chapter we study the fundamental nature of sound and its basic
mathematical representation as a signal. We also discuss discrete digital
representations of a signal, which form the basis of modern sound synthesis
and audio processing.

18.1 The Nature of Sound

Before studying digital audio, it’s important that we first know what sound
is. In essence, sound is the rapid compression and relaxation of air, which
travels as a wave through the air from the physical source of the sound to,
ultimately, our ears. The physical source of the sound could be the vibration
of our vocal chords (resulting in speech or singing), the vibration of a speaker
cone, the vibration of a car engine, the vibration of a string in a piano or
violin, the vibration of the reed in a saxophone or of the lips when playing
a trumpet, or even the (brief and chaotic) vibrations that result when our
hands come together as we clap. The “compression and relaxation” of the air
(or of a coiled spring) is called a longitudinal wave, in which the vibrations
occur parallel to the direction of travel of the wave. In contrast, a rope
that is fixed at one end and being shaken at the other, and a wave in the
ocean, are examples of a transverse wave, in which the rope’s and water’s
movement is perpendicular to the direction the wave is traveling.

[Note: There are some great animations of these two kinds of waves at:
http://www.computermusicresource.com/what.is.sound.html.]

If the rate and amplitude of the sound are within a suitable range, we

289
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can hear the sound—i.e. it is audible sound. “Hearing” results when the
vibrating air waves cause our ear drum to vibrate, in turn stimulating nerves
that enter our brain. Sound above our hearing range (i.e. vibration that is
too quick to induce any nerve impulses) is called ultrasonic sound, and sound
below our hearing range is said to be infrasonic.

Staying within the analog world, sound can also be turned into an elec-
trical signal using a microphone (or “mic” for short). Several common kinds
of microphones are:

1. Carbon microphone. Based on the resistance of a pocket of carbon
particles that are compressed and relaxed by the sound waves hitting
a diaphram.

2. Condenser microphone. Based on the capacitance between two di-
aphrams, one being vibrated by the sound.

3. Dynamic microphone. Based on the inductance of a coil of wire sus-
pended in a magnetic field (the inverse of a speaker).

4. Piezoelectric microphone. Based on the property of certain crystals to
induce current when they are bent.
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Figure 18.1: A Sine Wave

Perhaps the most common and natural way to represent a wave dia-
grammatically, whether it be a sound wave or electrical wave, longitudinal
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or transverse, is as a graph of its amplitude vs. time. For example, Figure
18.1 shows a sinusiodal wave of 1000 cycles per second, with an amplitude
that varies beween +1 and -1. A sinusoidal wave follows precisely the defini-
tion of the mathematical sine function, but also relates strongly, as we shall
soon see, to the vibration of sound produced by most musical instruments.
In the remainder of this text, we will refer to a sinusoidal wave simply as a
sine wave.

Acoustics is the study of the properties, in particular the propagation
and reflection, of sound. Psychoacoustics is the study of the mind’s inter-
pretation of sound, which is not always as tidy as the physical properties
that are manifest in acoustics. Obviously both of these are important ar-
eas of study for music in general, and therefore play an important role in
generating or simulating music with a computer.

The speed of sound can vary considerably, depending on the material,
the temperature, the humidity, and so on. For example, in dry air at room
temperature (68 degrees Farenheit), sound travels at a rate of 1,125 feet
(343 meters) per second, or 768 miles (1,236 kilometers) per hour. Perhaps
surprisingly, the speed of sound varies little with respect to air pressure,
although it does vary with temperature.

The reflection and absorbtion of sound is a much more difficult topic,
since it depends so much on the material, the shape and thickness of the
material, and the frequency of the sound. Modeling well the acoustics of a
concert hall, for example, is quite challenging. To understand how much such
reflections can affect the overall sound that we hear, consider a concert hall
that is 200 feet long and 100 feet wide. Based on the speed of sound given
above, it will take a sound wave 2×200/1125 = 0.355 seconds to travel from
the front of the room to the back of the room and back to the front again.
That 1/3 of a second, if loud enough, would result in a significant distortion
of the music, and corresponds to about one beat with a metronome set at
168.

With respect to our interpretation of music, sound has (at least) three
key properties:

1. Frequency (perceived as pitch).

2. Amplitude (perceived as loudness).

3. Spectrum (perceived as timbre).

We discuss each of these in the sections that follow.
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18.1.1 Frequency and Period

The frequency f is simply the rate of the vibrations (or repetitions, or cycles)
of the sound, and is the inverse of the period (or duration, or wavelength) p
of each of the vibrations:

f =
1

p

Frequency is measured in Hertz (abbreviated Hz), where 1 Hz is defined as
one cycle per second. For example, the sound wave in Figure 18.1 has a
frequency of 1000 Hz (i.e. 1 kHz) and a period of 1/1000 second (i.e. 1 ms).

In trigonometry, functions like sine and cosine are typically applied to
angles that range from 0 to 360 degrees. In audio processing (and signal
processing in general) angles are instead usually measured in radians, where
2π radians is equal to 360◦. Since the sine function has a period of 2π and
a frequency of 1/2π, it repeats itself every 2π radians:

sin(2πk + θ) = sin θ

for any integer k.

But for our purposes it is better to parameterize these functions over
frequency as follows. Since sin(2πt) covers one full cycle in one second, i.e.
has a frequency of 1 Hz, it makes sense that sin(2πft) covers f cycles in one
second, i.e. has a frequency of f . Indeed, in signal processing the quantity
ω is defined as:

ω = 2πf

That is, a pure sine wave as a function of time behaves as sin(ωt).

Finally, it is convenient to add a phase (or phase angle) to our formula,
which effectively shifts the sine wave in time. The phase is usually rep-
resented by φ. Adding a multiplicative factor A for amplitude (see next
section), we arrive at our final formula for a sine wave as a function of time:

s(t) = A sin(ωt+ φ)

A negative value for φ has the effect of “delaying” the sine wave, whereas a
positive value has the effect of “starting early.” Note also that this equation
holds for negative values of t.

All of the above can be related to cosine by recalling the following iden-
tity:

sin(ωt+
π

2
) = cos(ωt)
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More generally:

A sin(ωt+ φ) = a cos(ωt) + b sin(ωt)

Given a and b we can solve for A and φ:

A =
√
a2 + b2

φ = tan−1 b

a

Given A and φ we can also solve for a and b:

a = A cos(φ)
b = A sin(φ)

18.1.2 Amplitude and Loudness

Amplitude can be measured in several ways. The peak amplitude of a signal
is its maximum deviation from zero; for example our sine wave in Figure
18.1 has a peak amplitude of 1. But different signals having the same peak
amplitude have more or less “energy,” depending on their “shape.” For
example, Figure 18.2 shows four kinds of signals: a sine wave, a square
wave, a sawtooth wave, and a triangular wave (whose names are suitably
descriptive). Each of them has a peak amplitude of 1. But, intuitively,
one would expect the square wave, for example, to have more “energy,”
or “power,” than a sine wave, because it is “fatter.” In fact, it’s value is
everywhere either +1 or -1.

To measure this characteristic of a signal, scientists and engineers often
refer to the root-mean-square amplitude, or RMS. Mathematically, the root-
mean-square is the square root of the mean of the squared values of a given
quantity. If x is a discrete quantity given by the values x1, x2, ..., xn, the
formula for RMS is:

xRMS =

√

x21 + x22 + ...+ x2n
n

And if f is continuous function, its RMS value over the interval T1 6

t 6 T2 is given by:

√

1

T2 − T1

∫ T2

−T1

f(t)2dt
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Figure 18.2: RMS Amplitude for Different Signals
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For a sine wave, it can be shown that the RMS value is approximately
0.707 of the peak value. For a square wave, it is 1.0. And for both a sawtooth
wave and a triangular wave, it is approximately 0.577. Figure 18.2 shows
these RMS values superimposed on each of the four signals.

Another way to measure amplitude is to use a relative logarithmic scale
that more aptly reflects how we hear sound. This is usually done by measur-
ing the sound level (usually in RMS) with respect to some reference level.
The number of decibels (dB) of sound is given by:

SdB = 10 log10
S

R

where S is the RMS sound level, and R is the RMS reference level. The
accepted reference level for the human ear is 10−12 watts per square meter,
which is roughly the threshold of hearing.

A related concept is the measure of how much useful information is in a
signal relative to the “noise.” The signal-to-noise ratio, or SNR, is defined
as the ratio of the power of each of these signals, which is the square of the
RMS value:

SNR =

(

S

N

)2

where S and N are the RMS values of the signal and noise, respectively.
As is often the case, it is better to express this on a logarithmic scale, as
follows:

SNRdB = 10 log10

(

S

N

)2

= 20 log10
S

N

The dynamic range of a system is the difference between the smallest
and largest values that it can process. Because this range is often very large,
it is usually measured in decibels, which is a logarithmic quantity. The ear,
for example, has a truly remarkable dynamic range—about 130 dB. To get
some feel for this, silence should be considered 0 dB, a whisper 30 dB, normal
conversation about 60 dB, loud music 80 dB, a subway train 90 dB, and a
jet plane taking off or a very loud rock concert 120 dB or higher.

Note that if you double the sound level, the decibels increase by about
3 dB, whereas a million-fold increase corresponds to 60 dB:

10 log10 2 = 10× 0.301029996 ∼= 3
10 log10 10

6 = 10× 6 = 60
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So the ear is truly adaptive! (The eye also has a large dynamic range with
respect to light intensity, but not quite as much as the ear, and its response
time is much slower.)

Figure 18.3: Fletcher-Munson Equal Loudness Contour

Loudness is the perceived measure of amplitude, or volume, of sound, and
is thus subjective. It is most closely aligned with RMS amplitude, with one
important exception: loudness depends somewhat on frequency! Of course
that’s obvious for really high and really low frequencies (since at some point
we can’t hear them at all), but in between things aren’t constant either.
Furthermore, no two humans are the same. Figure 18.3 shows the Fletcher-
Munson Equal-Loudness Contour, which reflects the perceived equality of
sound intensity by the average human ear with respect to frequency. Note
from this figure that:

• The human ear is less sensitive to low frequencies.

• The maximum sensitivity is around 3-4 kHz, which roughly corre-
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sponds to the resonance of the auditory canal.

Another important psychoacoustical property is captured in the Weber-
Fechner Law, which states that the just noticeable difference (jnd) in a
quantity—i.e. the minimal change necessary for humans to notice something
in a cognitive sense—is a relative constant, independent of the absolute level.
That is, the ratio of the change to the absolute measure of that quantity is
constant:

∆q

q
= k

The jnd for loudness happens to be about 1 db, which is another reason
why the decibel scale is so convenient. 1 db corresponds to a sound level
ratio of 1.25892541. So, in order for a person to “just notice” an increase in
loudness, one has to increase the sound level by about 25%. If that seems
high to you, it’s because your ear is so adaptive that you are not even aware
of it.

18.1.3 Frequency Spectrum

Humans can hear sound approximately in the range 20 Hz to 20,000 Hz =
20 kHz. This is a dynamic range in frequency of a factor of 1000, or 30 dB.
Different people can hear different degrees of this range (I can hear very low
tones well, but not very high ones). On a piano, the fundamental frequency
of the lowest note is 27.5 Hz, middle (concert) A is 440 hz, and the top-
most note is about 4 kHz. Later we will learn that these notes also contain
overtones—multiples of the fundamental frequency—that contribute to the
timbre, or sound quality, that distinguishes one instrument from another.
(Overtones are also called harmonics or partials.)

The phase, or time delay, of a signal is important too, and comes into
play when we start mixing signals together, which can happen naturally,
deliberately, from reverberations (room acoustics), and so on. Recall that
a pure sine wave can be expressed as sin(ωt + φ), where φ is the phase
angle. Manipulating the phase angle is common in additive synthesis and
amplitude modulation, topics to be covered in later chapters.

A key point is that most sounds do not consist of a single, pure sine
wave—rather, they are a combination of many frequencies, and at varying
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phases relative to one another. Thus it is helpful to talk of a signal’s fre-
quency spectrum, or spectral content. If we have a regular repetitive sound
(called a periodic signal) we can plot its spectral content instead of its time-
varying graph. For a pure sine wave, this looks like an impulse function, as
shown in Figure 18.4a.

But for a richer sound, it gets more complicated. First, the distribution
of the energy is not typically a pure impulse, meaning that the signal might
vary slightly above and below a particular frequency, and thus its frequency
spectrum typically looks more like Figure 18.4b.

In addition, a typical sound has many different frequencies associated
with it, not just one. Even for an instrument playing a single note, this
will include not just the perceived pitch, which is called the fundamental
frequency, but also many overtones (or harmonics) which are multiples of
the fundamental, as shown in Figure 18.4c. The natural harmonic series is
one that is approximated often in nature, and has a harmonically decaying
series of overtones.

What’s more, the articulation of a note by a performer on an instrument
causes these overtones to vary in relative size over time. There are several
ways to visualize this graphically, and Figure 18.5 shows two of them. In
18.5a, shading is used to show the varying amplitude over time. And in
18.5b, a 3D projection is used.

The precise blend of the overtones, their phases, and how they vary over
time, is primarily what distinguishes a particular note, say concert A, on a
piano from the same note on a guitar, a violin, a saxophone, and so on. We
will have much more to say about these issues in later chapters.

[See pictures at:
http://www.computermusicresource.com/spectrum.html.]

18.2 Digital Audio

The preceding discussion has assumed that sound is a continuous quantity,
which of course it is, and thus we represent it using continuous mathematical
functions. If we were using an analog computer, we could continue with this
representation, and create electronic music accordingly. Indeed, the earliest
electronic synthesizers, such as the Moog synthesizer of the 1960’s, were
completely analog.

However, most computers today are digital, which require representing
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sound (or signals in general) using digital values. The simplest way to do
this is to represent a continuous signal as a sequence of discrete samples of
the signal of interest. An analog-to-digital converter, or ADC, is a device
that converts an instantaneous sample of a continuous signal into a binary
value. The microphone input on a computer, for example, connects to an
ADC.

Normally the discrete samples are taken at a fixed sampling rate. Choos-
ing a proper sampling rate is quite important. If it is too low, we will not
acquire sufficient samples to adequately represent the signal of interest. And
if the rate is too high, it may be an overkill, thus wasting precious comput-
ing resources (in both time and memory consumption). Intuitively, it seems
that the highest frequency signal that we could represent using a sampling
rate r would have a frequency of r/2, in which case the result would have
the appearance of a square wave, as shown in Figure 18.6a. Indeed, it is
easy to see that problems could arise if we sampled at a rate significantly
lower than the frequency of the signal, as shown in Figures 18.6b and 18.6c
for sampling rates equal to, and one-half, of the frequency of the signal of
interest—in both cases the result is a sampled signal of 0 Hz!

Indeed, this observation is captured in what is known as the Nyquist-
Shannon Sampling Theorm that, stated informally, says that the accurate
reproduction of an analog signal (no matter how complicated) requires a
sampling rate that is at least twice the highest frequency of the signal of
interest.

For example, for audio signals, if the highest frequency humans can hear
is 20 kHz, then we need to sample at a rate of at least 40 kHz for a faithful
reproduction of sound. In fact, CD’s are recorded at 44.1 kHz. But many
people feel that this rate is too low, as some people can hear beyond 20 kHz.
Another recording studio standard is 48 kHz. Interestingly, a good analog
tape recorder from generations ago was able to record signals with frequency
content even higher than this—perhaps digital is not always better!

18.2.1 From Continuous to Discrete

Recall the definition of a sine wave from Section 18.1.1:

s(t) = A sin(ωt+ φ)

We can easily and intuitively convert this to the discrete domain by replac-
ing the time t with the quantity n/r, where n is the integer index into the
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sequence of discrete samples, and r is the sampling rate discussed above. If
we use s[n] to denote the (n+ 1)th sample of the signal, we have:

s[n] = A sin
(ωn

r
+ φ

)

, n = 0, 1, ...,∞

Thus s[n] corresponds to the signal’s value at time n/r.

18.2.2 Fixed-Waveform Table-Lookup Synthesis

One of the most fundamental questions in digital audio is how to generate
a sine wave as efficiently as possible, or, in general, how to generate a fixed
periodic signal of any form (sine wave, square wave, sawtooth wave, even
a sampled sound bite). A common and efficient way to generate a periodic
signal is through fixed-waveform table-lookup synthesis. The idea is very
simple: store in a table the samples of a desired periodic signal, and then
index through the table at a suitable rate to reproduce that signal at some
desired frequency. The table is often called a wavetable.

In general, if we let:

L = table length
f = resulting frequency
i = indexing increment
r = sample rate

then we have:

f =
ir

L

For example, suppose the table contains 8196 samples. If the sample
rate is 44.1 kHz, how do we generate a tone of, say, 440 Hz? Plugging in
the numbers and solving the above equation for i, we get:

440 =
i× 44.1kHz

8196

i =
440 × 8196

44.1kHz
= 81.77

So, if we were to sample approximately every 81.77th value in the table, we
would generate a signal of 440 Hz.
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Now suppose the table T is a vector, and T [n] is the nth element. Let’s
call the exact index increment i into a continuous signal the phase, and the
actual index into the corresponding table the phase index p. The compu-
tation of successive values of the phase index and output signal s is then
captured by these equations:

po = ⌊φ0 + 0.5⌋
pn+1 = (pn + i) mod L
sn = T [ ⌊pn + 0.5⌋ ]

⌊a+0.5⌋ denotes the floor of a+0.5, which effectively rounds a to the nearest
integer. φ0 is the initial phase angle (recall earlier discussion), so p0 is the
initial index into the table that specifies where the fixed waveform should
begin.

Instead of rounding the index, one could do better by interpolating be-
tween values in the table, at the expense of efficiency. In practice, rounding
the index is often good enough. Another way to increase accuracy is to
simply increase the size of the table.

18.2.3 Aliasing

Earlier we saw examples of problems that can arise if the sampling rate is not
high enough. We saw that if we sample a sine wave at twice its frequency, we
can suitably capture that frequency. If we sample at exactly its frequency,
we get 0 Hz. But what happens in between? Consider a sampling rate ever-
so-slightly higher or lower than the sine wave’s fundamental frequency--in
both cases, this will result in a frequency much lower than the original signal,
as shown in Figures 18.7 and 18.8. This is analogous to the effect of seeing
spinning objects under fluorescent or LED light, or old motion pictures of
the spokes in the wheels of horse-drawn carriages.

These figures suggest the following. Suppose that m is one-half the
sampling rate. Then:

Original signal Reproduced signal

0−m 0−m
m− 2m m− 0
2m− 3m 0−m
3m− 4m m− 0
· · · · · ·
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This phenomenon is called aliasing, or foldover of the signal onto itself.

This is not good! In particular, it means that audio signals in the ultra-
sonic range will get “folded” into the audible range. To solve this problem,
we can add an analog low-pass filter in front of the ADC–usually called
an anti-aliasing filter—to eliminate all but the audible sound before it is
digitized. In practice, however, this can be tricky. For example, a steep
analog filter introduces phase distortion (i.e. frequency-dependent time de-
lays), and early digital recordings were notorious in the “harsh sound” that
resulted. This can be fixed by using a filter with less steepness (but resulting
in more aliasing), or using a time correlation filter to compensate, or using
a technique called oversampling, which is beyond the scope of this text.

A similar problem occurs at the other end of the digital audio process—
i.e. when we reconstruct an analog signal from a digital signal using a digital-
to-analog converter, or DAC. The digital representation of a signal can be
viewed mathematically as a stepwise approximation to the real signal, as
shown in Figure 18.9, where the sampling rate is ten times the frequency
of interest. As discussed earlier, at the highest frequency (i.e. at one-half
the sampling rate), we get a square wave. As we will see in Chapter 20,
a square wave can be represented mathematically as the sum of an infinite
sequence of sine waves, consisting of the fundamental frequency and all of its
odd harmonics. These harmonics can enter the ultrasonic region, causing
potential havoc in the analog circuitry, or in a dog’s ear (dogs can hear
frequencies much higher than humans). The solution is to add yet another
low-pass filter, called an anti-imaging or smoothing filter to the output of
the DAC. In effect, this filter “connects the dots,” or interpolates, between
successive values of the stepwise approximation.

In any case, a basic block diagram of a typical digital audio system—from
sound input to sound output—is shown in Figure 18.10.

18.2.4 Quantization Error

In terms of amplitude, remember that we are using digital numbers to repre-
sent an analog signal. For conventional CD’s, 16 bits of precision are used.
If we were to compute and then “listen to” the round-off errors that are
induced, we would hear subtle imperfections, called quantization error, or
more commonly, “noise.”

One might compare this to “hiss” on a tape recorder (which is due to
the molecular disarray of the magnetic recording medium), but there are
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important differences. First of all, when there is no sound, there is no
quantization error in a digital signal, but there is still hiss on a tape. Also,
when the signal is very low and regular, the quantization error becomes
somewhat regular as well, and is thus audible as something different from
hiss. Indeed, it’s only when the signal is loud and complex that quantization
error compares favorably to tape hiss.

One solution to the problem of low signal levels mentioned above is to
purposely introduce noise into the system to make the signal less predictable.
This fortuitous use of noise deserves a better name, and indeed it is called
dither.

18.2.5 Dynamic Range

What is the dynamic range of an n-bit digital audio system? If we think of
quantization error as noise, it makes sense to use the equation for SNRdB

given in Section 18.1.2:

SNRdB = 20 log10
S

N

But what should N be, i.e. the quantization error? Given a signal am-
plitude range of ±a, with n bits of resolution it is divided into 2a/2n points.
Therefore the dynamic range is:

20 log10

(

2a
2a/2n

)

= 20× log10(2
n)

= 20× n× log10(2)

≈ 20× n× (0.3)

= 6n

For example, a 16-bit digital audio system results in a dynamic range of 96
dB, which is pretty good, although a 20-bit system yields 120 dB, corre-
sponding to the dynamic range of the human ear.

Exercise 18.1 For each of the following, say whether it is a longitudinal
wave or a transverse wave:

• A vibrating violin string.

• Stop-and-go traffic on a highway.
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• “The wave” in a crowd at a stadium.

• “Water hammer” in the plumbing of your house.

• The wave caused by a stone falling in a pond.

• A radio wave.

Exercise 18.2 You see a lightning strike, and 5 seconds later you hear the
thunder. How far away is the lightning?

Exercise 18.3 You clap your hands in a canyon, and 2 seconds later you
hear an echo. How far away is the canyon wall?

Exercise 18.4 By what factor must one increase the RMS level of a signal
to yield a 10 dB increase in sound level?

Exercise 18.5 A dog can hear in the range 60-45,000 Hz, and a bat 2,000-
110,000 Hz. In terms of the frequency response, what are the corresponding
dynamic ranges for these two animals, and how do they compare to that of
humans?

Exercise 18.6 What is the maximum number of audible overtones in a
note whose fundamental frequency is 100 Hz? 500 Hz? 1500 Hz? 5 kHz?

Exercise 18.7 Consider a continuous input signal whose frequency is f.
Devise a formula for the frequency r of the reproduced signal given a sample
rate s.

Exercise 18.8 How much memory is needed to record 3 minutes of stereo
sound using 16-bit samples taken at a rate of 44.1 kHz?

Exercise 18.9 If we want the best possible sound, how large should the
table be using fixed-waveform table-lookup synthesis, in order to cover the
audible frequency range?

Exercise 18.10 The Doppler effect occurs when a sound source is in mo-
tion. For example, as a police car moves toward you its siren sounds higher
than it really is, and as it goes past you, it gets lower. How fast would
a police car have to go to change a siren whose frequency is the same as
concert A, to a pitch an octave higher? (i.e. twice the frequency) At that
speed, what frequency would we hear after the police car passes us?



Chapter 19

Euterpea’s Signal Functions

{-# LANGUAGE Arrows #-}
module Euterpea.Examples .SigFuns where

import Euterpea
import Control .Arrow ((>>>), (<<<), arr )

Details: The first line in the module header above is a compiler pragma, amd

in this case is telling GHC to accept arrow syntax, which will be explained in

Section 19.1.

In this chapter we show how the theoretical concepts involving sound
and signals studied in the last chapter are manifested in Euterpea. The
techniques learned will lay the groundwork for doing two broad kinds of
activities: sound synthesis and audio processing. Sound synthesis might
include creating the sound of a footstep on dry leaves, simulating a con-
ventional musical instrument, creating an entirely new instrument sound,
or composing a single “soundscape” that stands alone as a musical com-
position. Audio processing includes such things as equalization, filtering,
reverb, special effects, and so on. In future chapters we will study various
techniques for achieving these goals.

311
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19.1 Signals and Signal Functions

As we saw in Chapter 17, it would seem natural to represent a signal as
an abstract type, say Signal T in Haskell, and then define functions to
add, multiply, take the sine of, and so on, signals represented in this way.
For example, Signal Float would be the type of a time-varying floating-
point number, Signal AbsPitch would be the type of a time-varing absolute
pitch, and so on. Then given s1, s2 :: Signal Float we might simply write
s1 + s2, s1 ∗ s2, and sin s1 as examples of applying the above operations.
Haskell’s numeric type class hierarchy would make this particularly easy to
do. Indeed, several domain-specific languages based on this approach have
been defined before, beginning with the language Fran [EH97] that was
designed for writing computer animation programs.

But years of experience and theoretical study have revealed that such an
approach leads to a language with subtle time- and space-leaks,1 for reasons
that are beyond the scope of this textbook [LH07]. Therefore Euterpea takes
a somewhat different approach, as described below.

Perhaps the simplest way to understand Euterpea’s approach to pro-
gramming with signals is to think of it as a language for expressing signal
processing diagrams (or equivalently, electrical circuits). We refer to the
lines in a typical signal processing diagram as signals, and the boxes that
convert one signal into another as signal functions. For example, this very
simple diagram has two signals, x and y , and one signal function, sigfun:

Image not in repository!

Using Haskell’s arrow syntax [Hug00, Pat01], this diagram can be expressed
as a code fragment in Euterpea simply as:

y ← sigfun −≺ x

Details: The syntax ← and −≺ is typeset here in an attractive way, but the user

will have to type <- and -<, respectively, in her source file.

1A time-leak in a real-time system occurs whenever a time-dependent computation falls
behind the current time because its value or effect is not needed yet, but then requires
“catching up” at a later point in time. This catching up process can take an arbitrarily
long time, and may consume additional space as well. It can destroy any hope for real-time
behavior if not managed properly.
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Arrows and arrow syntax will be described in much more detail in Chap-
ter ??. For now, keep in mind that ← and −≺ are part of the syntax, and
are not simply binary operators. Indeed, we can’t just write the above code
fragment anywhere. It has to be within an enclosing proc construct whose
result type is that of a signal function. The proc construct begins with the
keyword proc along with an argument, analogous to an anonymous func-
tion. For example, a signal function that takes a signal of type Double and
adds 1 to every signal sample, and then applies sigfun to the resulting signal,
can be written:

proc y → do
x ← sigfun −≺ y + 1
outA−≺ x

Details: The do keyword in arrow syntax introduces layout, just as it does in

monad syntax.

Note the analogy of this code to the following snippet involving an ordi-
nary anonymous function:

λy →
let x = sigfun (y + 1)
in x

The important difference, however, is that sigfun works on a signal, which
we can think of as a stream of values, whose representative values at the
“point” level are the variables x and y above. So in reality we would have
to write something like this:

λys →
let xs = sigfun (map (+1) ys)
in xs

to achieve the effect of the arrow code above. The arrow syntax allows us to
avoid worrying about the streams themselves. It also has other important
advantages that are beyond the scope of the current discussion.

Arrow syntax is just that--syntactic sugar that is expanded into a set of
conventional functions that work just as well, but are more cumbersome to
program with (just as with monad syntax). This syntactic expansion will
be described in more detail in Chapter ??. To use the arrow syntax within
a “.lhs” file, one must declare a compiler flag in GHC at the very beginning
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of the file, as follows:

{-# LANGUAGE Arrows #-}

19.1.1 The Type of a Signal Function

Polymorphically speaking, a signal function has type:

Clock c ⇒ SigFun c a b

which should be read, “for some clock type (i.e. sampling rate) c, this is the
type of signal functions that convert signals of type a into signals of type
b.”

The type variable c indicates what clock rate is being used, and for our
purposes will always be one of two types: AudRate or CtrRate (for audio
rate and control rate, respectively). Being able to express the sampling rate
of a signal function is what we call clock polymorphism. Although we like to
think of signals as continuous, time-varying quantities, in practice we know
that they are sampled representations of continous quantities, as discussed
in the last chapter. However, some signals need to be sampled at a very
high rate—say, an audio signal—whereas other signals need not be sampled
at such a high rate—say, a signal representing the setting of a slider. The
problem is, we often want to mix signals sampled at different rates; for
example, the slider might control the volume of the audio signal.

One solution to this problem would be to simply sample everything at the
very highest rate, but this is computationally inefficient. A better approach
is to sample signals at their most appropriate rate, and to perform coercions
to “up sample” or “down sample” a signal when it needs to be combined with
a signal sampled at a different rate. This is the approach used in Euterpea.

More specifically, the base type of each signal into and out of a signal
function must satisfy the type class constraint Clock c, where c is a clock
type. The Clocked class is defined as:

class Clock c where
rate :: c → Double

The single method rate allows the user to extract the sampling rate from
the type. In Euterpea, the AudRate is pre-defined to be 44.1 kHz, and the
CtrRate is set at 4.41 kHz. Here are the definitions of AudRate and CtrRate ,
along with their instance declarations in the Clock class, to achieve this:

data AudRate
data CtrRate
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instance Clock AudRate where
rate = 44100

instance Clock CtrRate where
rate = 4410

Because these two clock types are so often used, it is helpful to define a
couple of type synonyms:

type AudSF a b = SigFun AudRate a b
type CtrSF a b = SigFun CtrRate a b

From these definitions it should be clear how to define your own clock
type.

Details: Note that AudRate and CtrRate have no constructors—they are called

empty data types. More precisely, they are each inhabited by exactly one value,

namely ⊥.

The sampling rate can be determined from a given clock type. In this
way, a coercion function can be written to change a signal sampled at one
rate to a signal sampled at some other rate. In Euterpea, there are two such
functions that are pre-defined:

coerce , upsample :: (Clock c1,Clock c2)⇒
SigFun c1 a b → SigFun c2 a b

The function coerce looks up the sampling rates of the input and output
signals from the type variables c1 and c2. It then either stretches the input
stream by duplicating the same element or contracts it by skipping elements.
(It is also possible to define a more accurate coercion function that performs
interpolation, at the expense of performance.)

For simpler programs, the overhead of calling coerce might not be worth
the time saved by generating signals with lower resolution. (Haskells frac-
tional number implementation is relatively slow.) The specialized coercion
function upsample avoids this overhead, but only works properly when the
output rate is an integral multiple of the input rate (which is true in the
case of AudRate and CtrRate).

Keep in mind that one does not have to commit a signal function to a
particular clock rate—it can be left polymorphic. Then that signal function
will adapt its sampling rate to whatever is needed in the context in which
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it is used.

Also keep in mind that a signal function is an abstract function. You
cannot just apply it to an argument like an ordinary function—that is the
purpose of the arrow syntax. There are no values that directly represent
signals in Euterpea—there are only signal functions.

The arrow syntax provides a convenient way to compose signal functions
together—i.e. to wire together the boxes that make up a signal processing
diagram. By not giving the user direct access to signals, and providing a
disciplined way to compose signal functions (namely arrow syntax), time-
and space-leaks are avoided. In fact, the resulting framwework is highly
amenable to optimization, although this requires using special features in
Haskell, as described in Chapter ??.

A signal function whose type is of the form Clock c ⇒ SigFun c () b
essentially takes no input, but produces some output of type b. Because of
this we often refer to such a signal function as a signal source.

19.1.2 Four Useful Functions

There are four useful auxiliary functions that will make writing signal func-
tions a bit easier. The first two essentially “lift” constants and functions
from the Haskell level to the arrow (signal function) level:

arr :: Clock c ⇒ (a → b)→ SigFun c a b
constA :: Clock c ⇒ b → SigFun c () b

For example, a signal function that adds one to every sample of its input
can be written simply as arr (+1), and a signal function that returns the
constant 440 as its result can be written constA 440 (and is a signal source,
as defined earlier).

The other two functions allow us to compose signal functions:

(>>>) :: Clock clk ⇒
SigFun clk a b → SigFun clk b c → SigFun clk a c

(<<<) :: Clock clk ⇒
SigFun clk b c → SigFun clk a b → SigFun clk a c

(<<<) is analogous to Haskell’s standard composition operator (◦), whereas
(>>>) is like “reverse composition.”

As an example that combines both of the ideas above, recall the very
first example given in this chapter:

proc y → do
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x ← sigfun −≺ y + 1
outA−≺ x

which essentially applies sigfun to one plus the input. This signal function
can be written more succinctly as either arr (+1) >>> sigfun or sigfun <<<
arr (+1).

The functions (>>>), (<<<), and arr are actually generic operators on
arrows, and are defined in Haskell’s Arrow library. Euterpea imports them
from there and adds them to the Euterpea namespace, so they do not have
to be explicitly imported by the user.

19.1.3 Some Simple Examples

Let’s now work through a few examples that focus on the behavior of signal
functions, so that we can get a feel for how they are used in practice. Eu-
terpea has many pre-defined signal functions, including ones for sine waves,
numeric computations, transcendental functions, delay lines, filtering, noise
generation, integration, and so on. Many of these signal functions are in-
spired by csound [Ver86], where they are called unit generators. Some of
them are not signal functions per se, but take a few fixed arguments to yield
a signal function, and it is important to understand this distinction.

For example, there are several pre-defined functions for generating sine
waves and periodic waveforms in Euterpea. Collectively these are called os-
cillators, a name taken from electronic circuit design. They are summarized
in Figure 19.1.

The two most common oscillators in Euterpea are:

osc :: Clock c ⇒
Table → Double → SigFun c Double Double

oscFixed :: Clock c ⇒
Double → SigFun c () Double

osc uses fixed-waveform table-lookup synthesis as described in Section 18.2.2.
The first argument is the fixed wavetable; we will see shortly how such a
table can be generated. The second argument is the initial phase angle, rep-
resented as a fraction between 0 and 1. The resulting signal function then
converts a signal representing the desired output frequency to a signal that
has that output frequency.

oscFixed uses an efficient recurrence relation to compute a pure sinu-
soidal wave; the mathematics of this are described in Section ??. In contrast
with osc, its single argument is the desired output frequency. The resulting
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osc, oscI :: Clock c ⇒
Table → Double → SigFun c Double Double

osc tab ph is a signal function whose input is a frequency, and output
is a signal having that frequency. The output is generated using fixed-
waveform table-lookup, using the table tab, starting with initial offset
(phase angle) ph expressed as a fraction of a cycle (0 to 1). oscI is the
same, but uses linear interpolation between points.

oscFixed :: Clock c ⇒
Double → SigFun c () Double

oscFixed freq is a signal source whose sinusoidal output frequency is
freq . It uses a recurrence relation that requires only one multiply and
two add operations for each sample of output.

oscDur , oscDurI :: Clock c ⇒
Table → Double → Double → SigFun () Double

oscDur tab del dur samples just once through the table tab at a rate
determined by dur . For the first del seconds, the point of scan will
reside at the first location of the table; it will then move through the
table at a constant rate, reaching the end in another dur seconds; from
that time on (i.e. after del + dur seconds) it will remain pointing at the
last location. oscDurI is similar but uses linear interpolation between
points.

oscPartials :: Clock c ⇒
Table → Double → SigFun c (Double, Int) Double

oscPartials tab ph is a signal function whose pair of inputs determines
the frequency (as with osc), as well as the number of harmonics of that
frequency, of the output. tab is the table that is cycled through, and ph
is the phase angle (as with osc).

Figure 19.1: Euterpea’s Oscillators
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signal function is therefore a signal source (i.e. its input type is ()).

The key point here is that the frequency that is output by osc is an
input to the signal function, and therefore can vary with time, whereas the
frequency output by oscFixed is a fixed argument, and cannot vary with
time. To see this concretely, let’s define a signal source that generates a
pure sine wave using oscFixed at a fixed frequency, say 440 Hz:

s1 :: Clock c ⇒ SigFun c () Double
s1 = proc ()→ do

s ← oscFixed 440−≺ ()
outA−≺ s

Since the resulting signal s is directly returned through outA, this example
can also be written:

s1 = proc ()→ do
oscFixed 440−≺ ()

Alternatively, we could simply write oscFixed 440.

To use osc instead, we first need to generate a wavetable that represents
one full cycle of a sine wave. We can do this using one of Eutperpea’s table
generating functions, which are summarized in Figure 19.2. For example,
using Euterpea’s tableSinesN function, we can define:

tab1 :: Table
tab1 = tableSinesN 4096 [1]

This will generate a table of 4096 elements, consisting of one sine wave whose
peak amplitude is 1.0. Then we can define the following signal source:

s2 :: Clock c ⇒ SigFun c () Double
s2 = proc ()→ do

osc tab1 0−≺ 440

Alternatively, we could use the const and composition operators to write
either constA 440 >>> osc tab1 0 or osc tab2 0 <<< constA 440. s1 and s2
should be compared closely.

Keep in mind that oscFixed only generates a sine wave, whereas osc
generates whatever is stored in the wavetable. Indeed, tableSinesN actually
creates a table that is the sum of a series of overtones, i.e. multiples of the
fundmental frequency (recall the discussion in Section 18.1.3). For example:

tab2 = tableSinesN 4096 [1.0, 0.5, 0.33]

generates a waveform consisting of the fundamental frequency with ampli-
tude 1.0, the first overtone at amplitude 0.5, and the second overtone at
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type TableSize = Int
type PartialNum = Double
type PartialStrength = Double
type PhaseOffset = Double
type StartPt = Double
type SegLength = Double
type EndPt = Double

tableLinear , tableLinearN ::
TableSize → StartPt → [(SegLength,EndPt)]→ Table

tableLinear size sp pts is a table of size size whose starting point is (0, sp)
and that uses straight lines to move from that point to, successively, each of
the points in pts , which are segment-length/endpoint pairs (segment lengths
are projections along the x-axis). tableLinearN is a normalized version of the
result.

tableExpon , tableExponN ::
TableSize → StartPt → [(SegLength,EndPt)]→ Table

Just like tableLinear and tableLinearN , respectively, except that exponential
curves are used to connect the points.

tableSines3 , tableSines3N ::
TableSize → [(PartialNum ,PartialStrength,PhaseOffset)]→ Table

tableSines3 size triples is a table of size size that represents a sinusoidal wave
and an arbitrary number of partials, whose relationship to the fundamental
frequency, amplitude, and phase are determined by each of the triples in triples .
tableSines3N is a normalized version of the result.

tableSines , tableSinesN ::
TableSize → [PartialStrength ]→ Table

Like tableSines3 and tableSines3N , respectively, except that the second ar-
gument is an ordered list of the strengths of each partial, starting with the
fundamental.

tableBesselN ::
TableSize → Double → Table

tableBesselN size x is a table representing the log of a modified Bessel function

of the second kind, order 0, suitable for use in amplitude-modulated FM. x is

the x-interval (0 to x ) over which the function is defined.

Figure 19.2: Table Generating Functions
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amplitude 0.33. So a more complex sound can be synthesized just by chang-
ing the wavetable:

s3 :: Clock c ⇒ SigFun c () Double
s3 = proc ()→ do

osc tab2 0−≺ 440

To get the same effect using oscFixed we would have to write:

s4 :: Clock c ⇒ SigFun c () Double
s4 = proc ()→ do

f0 ← oscFixed 440 −≺ ()
f1 ← oscFixed 880 −≺ ()
f2 ← oscFixed 1320 −≺ ()
outA−≺ (f0 + 0.5 ∗ f1 + 0.33 ∗ f2)/1.83

Not only is this more complex, it is less efficient. (The division by 1.83 is
to normalize the result—if the peaks of the three signals f0, f1, and f2 align
properly, the peak amplitude will be 1.83 (or -1.83), which is outside the
range ±1.0 and may cause clipping (see discussion in Section 19.2).

So far in these examples we have generated a signal whose fundamental
frequency is 440 Hz. But as mentioned, in the case of osc, the input to the
oscillator is a signal, and can therefore itself be time-varying. As an ex-
ample of this idea, let’s implement vibrato—the performance effect whereby
a musician slightly varies the frequency of a note in a pulsating rhythm.
On a string instrument this is typically achieved by wiggling the finger on
the fingerboard, on a reed instrument by an adjustment of the breath and
emboucher to compress and relax the reed in a suitable way, and so on.

Specifically, let’s define a function:

vibrato :: Clock c ⇒
Double → Double → SigFun c Double Double

such that vibrato f d is a signal function that takes a frequency argument
(this is not a signal of a given frequency, it is the frequency itself), and
generates a signal at that frequency, but with vibrato added, where f is the
vibrato frequency, and d is the vibrato depth. We will consider “depth” to
be a measure of how many Hz the input frequency is modulated.

Intuitively, it seems as if we need two oscillators, one to generate the
fundamental frequency of interest, and the other to generate the vibrato
(much lower in frequency). Here is a solution:

vibrato :: Clock c ⇒
Double → Double → SigFun c Double Double
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vibrato vfrq dep = proc afrq → do
vib ← osc tab1 0−≺ vfrq
aud ← osc tab2 0−≺ afrq + vib ∗ dep
outA−≺ aud

Note that a pure sine wave is used for the vibrato signal, whereas tab2, a
sum of three sine waves, is chosen for the signal itself.

For example, to play a 1000 Hz tone with a vibrato frequency of 5 Hz
and a depth of 20 Hz, we could write:

s5 :: AudSF () Double
s5 = constA 1000 >>> vibrato 5 20

Vibrato is actually an example of a more general sound synthesis tech-
nique called frequency modulation (since one signal is being used to vary, or
modulate, the frequency of another signal), and will be explained in more
detail in Chapter ??. Other chapters include synthesis techniques such as
additive and subtractive synthesis, plucked instruments using waveguides,
physical modeling, granular synthesis, as well as audio processing techniques
such as filter design, reverb, and other effects. Now that we have a basic
understanding of signal functions, these techniques will be straighforward
to express in Euterpea.

19.2 Generating Sound

Euterpea can execute some programs in real-time, but sufficiently complex
programs require writing the result to a file. The function for achieving this
is:

outFile :: (AudioSample a,Clock c)⇒
String → Double → SigFun c () a → IO ()

The first argument is the name of the WAV file to which the result is written.
The second argument is the duration of the result, in seconds (remember that
signals are conceptually infinite). The third argument is a signal function
that takes no input and generates a signal of type a as output (i.e. a signal
source), where a is required to be an instance of the AudioSample type class,
which allows one to choose between mono, stereo, etc.

For convenience, Euterpea defines these type synonyms:

type Mono p = SigFun p () Double
type Stereo p = SigFun p () (Double,Double)



CHAPTER 19. EUTERPEA’S SIGNAL FUNCTIONS 323

For example, the IO command outfile "test.wav" 5 sf generates 5 sec-
onds of output from the signal function sf , and writes the result to the file
"test.wav". If sf has type Mono AudRate (i.e. SigFun AudRate () Double
then the result will be monophonic; if the type is Stereo AudRate (i.e.
SigFun AudRate () (Double,Double) the result will be stereophonic.

One might think that outFile should be restricted to AudRate. However,
by allowing a signal of any clock rate to be written to a file, one can use
external tools to analyze the result of control signals or other signals of
interest as well.

An important detail in writing WAV files with outFile is that care must
be taken to ensure that each sample falls in the range ±1.0. If this range is
exceeded, the output sound will be harshly distorted, a phenomenon known
as clipping. The reason that clipping sounds especially bad is that once the
maximum limit is exceeded, the subsequent samples are interpreted as the
negation of their intended value—and thus the signal swings abruptly from
its largest possible value to its smallest possible value. Of course, signals
within your program may be well outside this range—it is only when you
are ready to write the result to a file that clipping needs to be avoided.

One can easily write signal functions that deal with clipping in one way or
another. For example here’s one that simply returns the maximum (positive)
or mininum (negative) value if they are exceeded, thus avoiding the abrupt
change in magnitude described above, and degenerating in the worst case
to a square wave:

simpleClip :: Clock c ⇒ SigFun c Double Double
simpleClip = arr f where

f x = if abs x 6 1.0 then x else signum x

Details: abs is the absolute value function in Haskell, and signum returns -1 for

negative numbers, 0 for zero, and 1 for positive numbers.

19.3 Instruments

So far we have only considered signal functions as stand-alone values whose
output we can write to a WAV file. But how do we connect the ideas in
previous chapters aboutMusic values, Performances, and so on, to the ideas
presented in this chapter? This section presents a bridge between the two
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worlds.

19.3.1 Turning a Signal Function into an Instrument

Suppose that we have a Music value that, previously, we would have played
using a MIDI instrument, and now we want to play using an instrument
that we have designed using signal functions. To do this, first recall from
Chapter 2 that the InstrumentName data type has a special constructor
called Custom :

data InstrumentName =
AcousticGrandPiano
| BrightAcousticPiano
| ...
| Custom String
deriving (Show ,Eq ,Ord)

With this constructor, names (represented as strings) can be given to in-
struments that we have designed using signal functions. For example:

simpleInstr :: InstrumentName
simpleInstr = Custom "Simple Instrument"

Now we need to define the instrument itself. Euterpea defines the fol-
lowing type synonym:

type Instr a = Dur → AbsPitch → Volume → [Double ]→ a

Although Instr is polymorphic, by far its most common instantiation is the
type Instr (AufSF () Double). An instrument of this type is a function
that takes a duration, absolute pitch, volume, and a list of parameters, and
returns a signal source that generates the resulting sound.

The list of parameters (similar to the “pfields” in csound) are not used by
MIDI instruments, and thus have not been discussed until now. They afford
us unlimited expressiveness in controlling the sound of our signal-function
based instruments. Recall from Chapter 8 the types:

type Music1 = Music Note1
type Note1 = (Pitch, [NoteAttribute ])

data NoteAttribute =
Volume Int
| Fingering Integer
| Dynamics String
| Params [Double ]
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deriving (Eq ,Show )

Using the Params constructor, each individual note in a Music1 value can
be given a different list of parameters. It is up to the instrument designer
to decide how these parameters are used.

There are three steps to playing a Music value using a user-defined in-
strument. First, we must coerce our signal function into an instrument hav-
ing the proper type Instr as described above. For example, let’s turn the
vibrato function from the last section into a (rather primitive) instrument:

myInstr :: Instr (AudSF () Double)
-- Dur → AbsPitch → Volume → [Double ]→ (AudSF () Double)

myInstr dur ap vol [vfrq , dep ] =
proc ()→ do
vib ← osc tab1 0−≺ vfrq
aud ← osc tab2 0−≺ apToHz ap + vib ∗ dep
outA −≺ aud

Aside from the re-shuffling of arguments, note the use of the function apToHz ,
which converts an absolute pitch into its corresponding frequency:

apToHz :: Floating a ⇒ AbsPitch → a

Next, we must connect our instrument name (used in the Music value)
to the instrument itself (such as defined above). This is achieved using a
simple association list, or instrument map:

type InstrMap a = [(InstrumentName , Instr a)]

Continuing the example started above:

myInstrMap :: InstrMap (AudSF () Double)
myInstrMap = [(simpleInstr ,myInstr )]

Finally, we need a function that is analogous to perform from Chapter 8,
except that instead of generating a Performance , it creates a single signal
function that will “play” our Music value for us. In Euterpea that function
is called renderSF :

renderSF :: (Performable a,AudioSample b,Clock c)⇒
Music a →
InstrMap (SigFun p () b)→
(Double,SigFun p () b)

The first element of the pair that is returned is the duration of the Music
value, just as is returned by perform . That way we know how much of the
signal function to render in order to hear the entire composition.
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mel ::Music1
mel =

let m = Euterpea.line [na1 (c 4 en), na1 (ef 4 en),na1 (f 4 en),
na2 (af 4 qn), na1 (f 4 en), na1 (af 4 en),
na2 (bf 4 qn), na1 (af 4 en), na1 (bf 4 en),
na1 (c 5 en), na1 (ef 5 en), na1 (f 5 en),
na3 (af 5 wn)]

na1 (Prim (Note d p)) = Prim (Note d (p, [Params [0, 0]]))
na2 (Prim (Note d p)) = Prim (Note d (p, [Params [5, 10]]))
na3 (Prim (Note d p)) = Prim (Note d (p, [Params [5, 20]]))

in instrument simpleInstr m

Figure 19.3: A Simple Melody

Using the simple melody mel in Figure 19.3, and the simple vibrato
instrument defined above, we can generate our result and write it to a file,
as follows:

(dr , sf ) = renderSF mel myInstrMap
main = outFile "simple.wav" dr sf

For clarity we show in Figure 19.4 all of the pieces of this running example
as one program.

19.3.2 Envelopes

Most instruments played by humans have a distinctive sound that is partially
dependent on how the performer plays a particular note. For example, when
a wind instrument is played (whether it be a flute, saxophone, or trumpet),
the note does not begin instantaneously—it depends on how quickly and
forcibly the performer blows into the instrument. This is called the “attack.”
Indeed, it is not uncommon for the initial pulse of energy to generate a sound
that is louder than the “sustained” portion of the sound. And when the note
ends, the airflow does not stop instantaneously, so there is variability in the
“release” of the note.

The overall variability in the loudness of a note can be simulated by
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simpleInstr :: InstrumentName
simpleInstr = Custom "Simple Instrument"

myInstr :: Instr (AudSF () Double)
myInstr dur ap vol [vfrq , dep ] =

proc ()→ do
vib ← osc tab1 0−≺ vfrq
aud ← osc tab2 0−≺ apToHz ap + vib ∗ dep
outA −≺ aud

myInstrMap :: InstrMap (AudSF () Double)
myInstrMap = [(simpleInstr ,myInstr )]

(d , sf ) = renderSF mel myInstrMap
main = outFile "simple.wav" d sf

Figure 19.4: A Complete Example of a Signal-Function Based Instrument

...

Figure 19.5: ADSR Envelope

multiplying the output of a signal function by an envelope, which is a time-
varying signal that captures the desired behavior. Indeed, the ADSR en-
velope (attack, decay, sustain, release) introduced above is one of the most
common envelopes used in practice. It is shown pictorially in Figure 19.5.
Before defining it in Euterpea, however, we first describe a collection of
simpler envelopes.

Figure 19.6 shows six pre-defined envelope-generating functions. Read
the code comments carefully to understand what they do.

Here are some additional comments regarding envCSEnvplx , easily the
most sophisticated of the envelope generators:

1. The fifth argument to envCSEnvplx : A value greater than 1 causes
exponential growth; a value less than 1 causes exponential decay; a
value = 1 will maintain a true steady state at the last rise value. The
attenuation is not by a fixed rate (as in a piano), but is sensitive to a
note’s duration. However, if this argument is less than 0 (or if steady
state is less than 4 k-periods) a fixed attenuation rate of abs atss per
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-- a linear envelope
envLine :: Clock p ⇒
Double → -- starting value
Double → -- duration in seconds
Double → -- value after dur seconds
SigFun p () Double

-- an exponential envelope
envExpon :: Clock p ⇒
Double → -- starting value; zero is illegal for exponentials
Double → -- duration in seconds
Double → -- value after dur seconds (must be non-zero

-- and agree in sign with first argument)
SigFun p () Double

-- a series of linear envelopes
envLineSeg :: Clock p ⇒
[Double ]→ -- list of points to trace through
[Double ]→ -- list of durations for each line segment

-- (one element fewer than previous argument)
SigFun p () Double

-- a series of exponential envelopes
envExponSeg :: Clock p ⇒
[Double ]→ -- list of points to trace through
[Double ]→ -- list of durations for each line segment

-- (one element fewer than previous argument)
SigFun p () Double

-- an “attack/decay/release” envelope; each segment is linear
envASR :: Clock p ⇒
Double → -- rise time in seconds
Double → -- overall duration in seconds
Double → -- decay time in seconds
SigFun p () Double

-- a more sophisticated ASR
envCSEnvlpx :: Clock p ⇒
Double → -- rise time in seconds
Double → -- overall duration in seconds
Double → -- decay time in seconds
Table → -- table representing rise shape
Double → -- attenuation factor, by which the last value

-- of the envlpx rise is modified during the
-- note’s pseudo steady state

Double → -- attenuation factor by which the closing
-- steady state value is reduced exponentially
-- over the decay period

SigFun p () Double

Figure 19.6: Envelopes
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second is used. A value of 0 is illegal.

2. The sixth arg to envCSEnvplx : Must be positive and is normally of
the order of 0.01. A large or excessively small value is apt to produce a
cutoff that is not audible. Values less than or equal to 0 are disallowed.

Exercise 19.1 Using the Euterpea function osc, create a simple sinusoidal
wave, but using different table sizes, and different frequencies, and see if you
can hear the differences (report on what you hear). Use outFile to write your
results to a file, and be sure to use a decent set of speakers or headphones.

Exercise 19.2 The vibrato function varies a signals frequency at a given
rate and depth. Define an analogous function tremolo that varies the volume
at a given rate and depth. However, in a sense, tremolo is a kind of envelope
(infinite in duration), so define it as a signal source, with which you can then
shape whatever signal you wish. Consider the “depth” to be the fractional
change to the volume; that is, a value of 0 would result in no tremolo, a
value of 0.1 would vary the amplitude from 0.9 to 1.1, and so on. Test your
result.

Exercise 19.3 Define an ADSR (“attack/decay/sustain/release”) envelope
generator (i.e. a signal source) called envADSR, with type:

type DPair = (Double,Double) -- pair of duration and amplitude
envADSR :: DPair → DPair → DPair → Double → AudSF () Double

The three DPair arguments are the duration and amplitude of the attack,
decay, and release “phases,” respectively, of the envelope. The sustain phase
should hold the last value of the decay phase. The fourth argument is the
duration of the entire envelope, and thus the duration of the sustain phase
should be that value minus the sum of the durations of the other three
phases. (Hint: use Euterpeas envLineSeg function.) Test your result.

Exercise 19.4 Generate a signal that causes clipping, and listen to the
result. Then use simpleClip to “clean it up” somewhat—can you hear the
difference? Now write a more ambitious clipping function. In particular,
one that uses some kind of non-linear reduction in the signal amplitude as
it approaches plus or minus one (rather than abruptly “sticking” at plus or
minus one, as in simpleClip).
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Exercise 19.5 Define two instruments, each of type Instr (AudSF () Double).
These can be as simple as you like, but each must take at least two Params .
Define an InstrMap that uses these, and then use renderSF to “drive” your
instruments from a Music1 value. Test your result.



Chapter 20

Spectrum Analysis

{-# LANGUAGE Arrows #-}
module Euterpea.Music.Signal .SpectrumAnalysis where

import Euterpea
import Euterpea.Experimental (fftA)

import Data.Complex (Complex ((:+)), polar )
import Data.Maybe (listToMaybe , catMaybes)

There are many situations where it is desirable to take an existing sound
signal—in particular one that is recorded by a microphone—and analyze it
for its spectral content. If one can do this effectively, it is then possible (at
least in theory) to recreate the original sound, or to create novel variations
of it. The thepry behind this approach is based on Fourier’s Theorem, which
states that any periodic signal can be decomposed into a weighted sum of
(a potentially infinite number of) sine waves. In this chapter we discuss the
theory as well as the pragmatics for doing spectrum analysis in Euterpea.

20.1 Fourier’s Theorem

A periodic signal is a signal that repeats itself infinitely often. Mathemati-
cally, a signal x is periodic if there exists a real number T such that for all
integers n:

x(t) = x(t+ nT )

T is called the period, which may be just a few microseconds, a few seconds,
or perhaps days—the only thing that matters is that the signal repeats

331
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itself. Usually we want to find the smallest value of T that satisfies the
above property. For example, a sine wave is surely periodic; indeed, recall
from Section 18.1.1 that:

sin(2πk + θ) = sin θ

for any integer k. In this case, T = 2π, and it is the smallest value that
satisfies this property.

But in what sense is, for example, a single musical note periodic? Indeed
it is not, unless it is repeated infinitely often, which would not be very
interesting musically. Yet something we would like to know is the spectral
content of that single note, or even of a small portion of that note, within
an entire composition. This is one of the practical problems that we will
address later in the chapter.

Recall from Section 18.1.1 that a sine wave can be represented by: x(t) =
A sin(ωt + φ), where A is the amplitude, ω is the radian frequency, and φ
is the phase angle. Joseph Fourier, a french mathematician and physicist,
showed the following result. Any periodic signal x(t) with period T can be
represented as:

x(t) = C0 +

∞
∑

n=1

Cn cos(ω0nt+ φn) (20.1)

This is called Fourier’s Theorem. ω0 = 2π/T is called the fundamental fre-
quency. Note that the frequency of each cosine wave in the series is an
integer multiple of the fundamental frequency. The above equation is also
called the Fourier series or harmonic series (related, but not to be confused
with, the mathematical definition of harmonic series, which has the precise
form 1 + 1/2 + 1/3 + 1/4 + · · · ).

The trick, of course, is determining what the coefficients C0, ..., Cn and
phase angles φ1, ..., φn are. Determining the above equation for a particular
periodic signal is called Fourier analysis, and synthesizing a sound based
on the above equation is called Fourier synthesis. Theoretically, at least,
we should be able to use Fourier analysis to decompose a sound of interest
into its composite sine waves, and then regenerate it by artificially generating
those composite sine waves and adding them together (i.e. additive synthesis,
to be described in Chapter 21). Of course, we also have to deal with the
fact that the representation may involve an infinite number of composite
signals.
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As discussed somewhat in Chapter 18, many naturally occurring vibra-
tions in nature—including the resonances of most musical instruments—are
characterized as having a fundamental frequency (the perceived pitch) and
some combination of multiples of that frequency, which are often called har-
monics, overtones or partials. So Fourier’s Theorem seems to be a good
match for this musical application.

20.1.1 The Fourier Transform

When studying Fourier analysis, it is more convenient, mathematically, to
use complex exponentials. We can relate working with complex exponentials
back to sines and cosines using Euler’s Formula:

ejθ = cos(θ) + jsin(θ)

cos(θ) =
1

2
(ejθ + e−jθ)

sin(θ) =
1

2
(ejθ − e−jθ)

For a periodic signal x(t), which we consider to be a function of time, we
denote its Fourier transform by x̂(f), which is a function of frequency. Each
point in x̂ is a complex number that represents the magnitude and phase of
the frequency f ’s presence in x(t). Using complex exponentials, the formula
for x̂(f) in terms of x(t) is:

x̂(f) =

∫ ∞

−∞
x(t)e−jωtdt

where ω = 2πf , and j is the same as the imaginary unit i used in math-
ematics.1 Intuitively, the Fourier transform at a particular frequency f is
the integral of the product of the original signal and a pure sinusiodal wave
e−jωt. This latter process is related to the convolution of the two signals,
and intuitively will be non-zero only when the signal has some content of
that pure signal in it.

The above equation describes x̂ in terms of x. We can also go the other
way around—defining x in terms of x̂:

x(t) =

∫ ∞

−∞
x̂(f)ejω̂fdf

1Historically, engineers prefer to use the symbol j rather than i, because i is generally
used to represent current in an electrical circuit.
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where ω̂ = 2πt. This is called the inverse Fourier transform.

If we expand the definitions of ω and ω̂ we can see how similar these two
equations are:

x̂(f) =

∫ ∞

−∞
x(t)e−j2πftdt (20.2)

x(t) =

∫ ∞

−∞
x̂(f)ej2πftdf (20.3)

These two equations, for the Fourier transform and its inverse, are remark-
able in their simplicity and power. They are also remarkable in the following
sense: no information is lost when converting from one to the other. In other
words, a signal can be represented in terms of its time-varying behavior or
its spectral content—they are equivalent!

A function that has the property that f(x) = f(−x) is called an even
function; if f(x) = −f(−x) it is said to be odd. It turns out that, perhaps
surprisingly, any function can be expressed as the sum of a single even func-
tion and a single odd function. This may help provide some intuition about
the equations for the Fourier transform, because the complex exponential
ej2πft separates the waveform by which it is being multiplied into its even
and odd parts (recall Euler’s formula). The real (cosine) part affects only
the even part of the input, and the imaginary (sine) part affects only the
odd part of the input.

20.1.2 Examples

Let’s consider some examples, which are illustrated in Figure 20.1:

• Intuitively, the Fourier transform of a pure cosine wave should be an
impulse function—that is, the spectral content of a cosine wave should
be concentrated completely at the frequency of the cosine wave. The
only catch is that, when working in the complex domain, the Fourier
transform also yields the mirror image of the spectral content, at a
frequency that is the negation of the cosine wave’s frequency, as shown
in Figure 20.1a. In other words, in this case, x̂(f) = x̂(−f), i.e. x̂ is
even. So the spectral content is the real part of the complex number
returned from the Fourier transform (recall Euler’s formula).

• In the case of a pure sine wave, we should expect a similar result. The
only catch now is that the spectral content is contained in the imagi-
nary part of the complex number returned from the Fourier transform
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(recall Euler’s formula), and the mirror image is negated. That is,
x̂(f) = −x̂(−f), i.e. x̂ is odd. This is illustrated in Figure 20.1b.

• Conversely, consider what the spectral content of an impulse function
should be. Because an impulse function is infinitely “sharp,” it would
seem that its spectrum should contain energy at every point in the fre-
quency domain. Indeed, the Fourier transform of an impulse function
centered at zero is a constant, as shown in Figure 20.1c.

• Consider now the spectral content of a square wave. It can be shown
that the Fourier series representation of a square wave is the sum of the
square wave’s fundamental frequency plus its harmonically decreasing
(in magnitude) odd harmonics. Specifically:

sq(t) =
∞
∑

k=1

1

k
sin kωt, for odd k (20.4)

The spectral content of this signal in shown in Figure 20.1d. Fig-
ure 20.2 also shows partial reconstruction of the square wave from a
finite number of its composite signals.

It is worth noting that the diagrams in Figure 20.1 make no assumptions
about time or frequency. Therefore, because the Fourier transform and its
inverse are true mathematical inverses, we can read the diagrams as time
domain / frequency domain pairs, or the other way around; i.e. as frequency
domain / time domain pairs. For example, interpreting the diagram on the
left of Figure 20.1a in the frequency domain, is to say that it is the Fourier
transform of the signal on the right (interpreted in the time domain).

20.2 The Discrete Fourier Transform

Recall from Section 18.2.1 that we can move from the continuous signal
domain to the discrete domain by replacing the time t with the quantity n/r,
where n is the integer index into the sequence of discrete samples, and r is
the sampling rate. Let us assume that we have done this for x, and we will
use square brackets to denote the difference. That is, x[n] denotes the nth

sample of the continuous signal x(t), corresponding to the value x(n/r).

We would now like to compute the Discrete Fourier Transform (DFT)
of our discrete signal. But instead of being concerned about the sampling
rate (which can introduce aliasing, for example), our concern turns to the
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(a) Cosine wave
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(b) Sine wave
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(c) Impulse function
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Figure 20.1: Examples of Fourier Transforms
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(b) Sine wave + third harmonic
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(c) Sine wave + third and fifth harmonics
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Figure 20.2: Generating a Square Wave from Odd Harmonics
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number of samples that we use in computing the DFT—let’s call this N .
Intuitively, the integrals used in our equations for the Fourier transform and
its inverse should become sums over the range 0...N − 1. This leads to a
reformulation of our two equations (20.2 and 20.3) as follows:2

x̂[k] =
1

N

N−1
∑

n=0

x[n]e−j 2πkn
N , k = 0, 1, ..., N − 1 (20.5)

x[n] =

N−1
∑

k=0

x̂[k]ej
2πkn
N , n = 0, 1, ..., N − 1 (20.6)

Despite all of the mathematics up to this point, the reader may now
realize that the discrete Fourier transform as expressed above is amenable
to implementation—for example it should not be difficult to write Haskell
functions that realize each of the above equations. But before addressing
implementation issues, let’s discuss a bit more what the results actually
mean.

20.2.1 Interpreting the Frequency Spectrum

Just as x[n] represents a sampled version of the continuous input signal, x̂[k]
represents a sampled version of the continous frequency spectrum. Care
must be taken when interpreting either of these results, keeping in mind
the Nyquist-Shannon Sampling Theorem (recall Section 18.2) and aliasing
(Section 18.2.3).

Also recall that the result of a Fourier transform of a periodic signal
is a Fourier series (see Section 20.1), in which the signal being analyzed is
expressed as multiples of a fundamental frequency. In equation 20.5 above,
that fundamental frequency is the inverse of the duration of the N samples,
i.e. the inverse of N/r, or r/N . For example, if the sampling rate is 44.1 kHz
(the CD standard), then:

• If we take N = 441 samples, then the fundamental frequency will be
r/N = 100 Hz.

2The purpose of the factor 1/N in Equation 20.5 is to ensure that the DFT and the
inverse DFT are in fact inverses of each other. But it is just by convention that one
equation has this factor and the other does not—it would be sufficient if it were done the
other way around. In fact, all that matters is that the product of the two coefficients be
1/N, and thus it would also be sufficient for each equation to have the same coefficient,
namely 1/

√

N. Similarly, the negative exponent in one equation and positive in the other
is also by convention—it would be sufficient to do it the other way around.
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• If we take N = 4410 samples, then the fundamental frequency will be
r/N = 10 Hz.

• If we take N = 44100 samples, then the fundamental frequency will
be r/N = 1 Hz.

Thus, as would be expected, taking more samples yields a finer resolution
of the frequency spectrum. On the other hand, note that if we increase
the sampling rate and keep the number of samples fixed, we get a coarser
resolution of the spectrum—this also should be expected, because if we
increase the sampling rate we would expect to have to look at more samples
to get the same accuracy.

Analogous to the Nyquist-Shannon Sampling Theorem, the representable
points in the resulting frequency spectrum lie in the range ±r/2, i.e. between
plus and minus one-half of the sampling rate. For the above three cases,
respectively, that means the points are:

• -22.0 kHz, -21.9 kHz, ..., -0.1 kHz, 0, 0.1 kHz, ..., 21.9 kHz, 22.0 kHz

• -22.05 kHz, -22.04 kHz, ..., -10 Hz, 0, 10 Hz, ..., 22.04 kHz, 22.05 kHz

• -22.05 kHz, -22.049 kHz, ..., -1 Hz, 0, 1 Hz, ..., 22.049 kHz, 22.05 kHz

For practical purposes, the first of these is usually too coarse, the third is
too fine, and the middle one is useful for many applications.

Note that the first range of frequencies above does not quite cover the
range ±r/2. But remember that this is a discrete representation of the ac-
tual frequency spectrum, and the proper interpretation would include the
frequences +r/2 and −r/2.

Also note that there are N+1 points in each of the above ranges, not N .
Indeed, the more general question is, how do these points in the frequency
spectrum correspond to the indices i = 0, 1, ..., N − 1 in x̂[i]? If we denote
each of these frequencies as f , the answer is that:

f =
ir

N
, i = 0, 1, ..., N − 1 (20.7)

But note that this range of frequencies extends from 0 to (N − 1)(r/N),
which exceeds the Nyquist-Shannon sampling limit of r/2. The way out
of this dilemma is to realize that the DFT assumes that the input signal
is periodic in time, and therefore the DFT is periodic in frequency. In
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other words, values of f for indices i greater than N/2 can be interpreted
as frequencies that are the negation of the frequency given by the formula
above. Assuming even N , we can revise formula 20.7 as follows:

f =











i
r

N
, i = 0, 1, ...,

N

2

(i−N)
r

N
i =

N

2
,
N

2
+ 1, ..., N − 1

(20.8)

Note that when i = N/2, both equations apply, yielding f = r/2 in the first
case, and f = −r/2 in the second. Indeed, the magnitude of the DFT for each
of these frequencies is the same (see discussion in the next section), reflecting
the periodicity of the DFT, and thus is simply a form of redundancy.

The above discussion has assumed a periodic signal whose fundamen-
tal frequency is known, thus allowing us to parameterize the DFT with
the same fundamental frequency. In practice this rarely happens. That is,
the fundamental frequency of the DFT typically has no integral relation-
ship to the period of the periodic signal. This raises the question, what
happens to the frequencies that “fall in the gaps” between the frequencies
discussed above? The answer is that the energy of that frequency compo-
nent will be distributed amongst neighboring points in a way that makes
sense mathematically, although the result may look a little funny compared
to the ideal result (where every frequency component is an integer multiple
of the fundamental). The important thing to remember is that these are
digital representations of the exact spectra, just as a digitized signal is rep-
resentative of an exact signal. Two digitized signals can look very different
(depending on sample rate, phase angle, and so on), yet represent the same
underlying signal—the same is true of a digitized spectrum.

In practice, for reasons of computational efficiency, N is usually chosen to
be a power of two. We will return to this issue when we discuss implementing
the DFT.

20.2.2 Amplitude and Power of Spectrum

We discussed above how each sample in the result of a DFT relates to a point
in the frequency spectrum of the input signal. But how do we determine
the amplitude and phase angle of each of those frequency components? In
general each sample in the result of a DFT is a complex number, thus
having both a real and imaginary part, of the form a+ jb. We can visualize
this number as a point in the complex Cartesian plane, where the abscissa
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(x-axis) represents the real part, and the ordinate (y-axis) represents the
imaginary part, as shown in Figure 20.3. It is easy to see that the line from
the origin to the point of interest is a vector A, whose length is the amplitude
of the frequency component in the spectrum:

A =
√

a2 + b2 (20.9)

The angle θ is the phase, and it is easily defined from the figure as:

θ = tan−1 b

a
(20.10)

(This amplitude / phase pair is often called the polar representation of a
complex number.)

Im
ag

in
ar

y

Real

θ
a

b
(a,b)

A

Figure 20.3: Complex and Polar Coordinates

Recall from Section 18.1.2 that power is proportional to the square of
the amplitude. Since taking a square root adds computational expense,
the square root is often omitted from Equation 20.9, thus yielding a power
spectrum instead of an amplitude spectrum.

One subtle aspect of the resulting DFT is how to interpret negative fre-
quencies. In the case of having an input whose samples are all real numbers
(i.e. there are no imaginary components), which is true for audio applica-
tions, the negative spectrum is a mirror image of the positive spectrum, and
the amplitude/power is distributed evenly between the two.
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20.2.3 A Haskell Implementation of the DFT

From equation 20.5, which defines the DFT mathematically, we can write a
Haskell program that implements the DFT.

The first thing we need to do is understand how complex numbers are
handled in Haskell. They are captured in the Complex library, which must
be imported into any program that uses them. The type Complex T is
the type of complex numbers whose underlying numeric type is T . We will
use, for example, Complex Double for testing our DFT. A complex number
a + jb is represented in Haskell as a :+ b, and since (:+) is a constructor,
such values can be pattern matched.

Details: Complex numbers in Haskell are captured in the Complex library, in
which complex numbers are defined as a polymorphic data type:

infix 6 :+
data (RealFloat a)⇒ Complex a = !a :+ !a

The “!” in front of the type variables declares that the constructor (:+) is strict in
its arguments. For example, the complex number a+ jb is represented by a :+ b
in Haskell. One can pattern match on complex number values to extract the real
and imaginary parts, or use one of the predefined selectors defined in the Complex
library:

realPart , imagPart ::RealFloat a ⇒ Complex a → a

The Complex library also defines the following functions:

conjugate :: RealFloat a ⇒ Complex a → Complex a
mkPolar :: RealFloat a ⇒ a → a → Complex a
cis :: RealFloat a ⇒ a → Complex a
polar :: RealFloat a ⇒ Complex a → (a, a)
magnitude, phase :: RealFloat a ⇒ Complex a → a

The library also declares instances ofComplex for the type classesNum, Fractional ,

and Floating .

Although not as efficient as arrays, for simplicity we choose to use lists to
represent the vectors that are the input and output of the DFT. Thus if xs is
the list that represents the signal x, then xs !!n is the n+1th sample of that
signal, and is equivalent to x[n]. Furthermore, using list comprehensions, we
can make the Haskell code look very much like the mathematical definition
captured in Equation 20.5. Finally, we adopt the convention that the length
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of the input signal is the number of samples that we will use for the DFT.

Probably the trickiest part of writing a Haskell program for the DFT is
dealing with the types! In particular, if you look closely at Equation 20.5 you
will see that N is used in three different ways—as an integer (for indexing),
as a real number (in the exponent of e), and as a complex number (in the
expression 1/N).

Here is a Haskell program that implements the DFT:

dft :: RealFloat a ⇒ [Complex a ]→ [Complex a ]
dft xs =

let lenI = length xs
lenR = fromIntegral lenI
lenC = lenR :+ 0

in [let i = −2 ∗ pi ∗ fromIntegral k /lenR
in (1/lenC ) ∗ sum [(xs !! n) ∗ exp (0 :+ i ∗ fromIntegral n)

| n ← [0, 1 . . lenI − 1]]
| k ← [0, 1 . . lenI − 1]]

Note that lenI , lenR, and lenC are the integer, real, and complex versions,
respectively, of N . Otherwise the code is fairly straightforward—note in
particular how list comprehensions are used to implement the ranges of n
and k in Equation 20.5.

To test our program, let’s first create a couple of waveforms. For exam-
ple, recall that Equation 20.4 defines the Fourier series for a square wave.
We can implement the first, first two, and first three terms of this series, cor-
responding respectively to Figures 20.2a, 20.2b, and 20.2c, by the following
Haskell code:

mkTerm :: Int → Double → [Complex Double ]
mkTerm num n = let f = 2 ∗ pi /fromIntegral num

in [sin (n ∗ f ∗ fromIntegral i)/n :+ 0
| i ← [0, 1 . . num − 1]]

mkxa,mkxb,mkxc :: Int → [Complex Double ]
mkxa num = mkTerm num 1
mkxb num = zipWith (+) (mkxa num) (mkTerm num 3)
mkxc num = zipWith (+) (mkxb num) (mkTerm num 5)

Thus mkTerm num n is the nth term in the series, using num samples.

Using the helper function printComplexL defined in Figure 20.4, which
“pretty prints” a list of complex numbers, we can look at the result of our
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printComplexL :: [Complex Double ]→ IO ()
printComplexL xs =

let f (i , rl :+ im) =
do putStr (spaces (3− length (show i)))

putStr (show i ++ ": (" )
putStr (niceNum rl ++ ", " )
putStr (niceNum im ++ ")\n" )

in mapM f (zip [0 . . length xs − 1] xs)

niceNum :: Double → String
niceNum d =

let d ′ = fromIntegral (round (1 e10 ∗ d))/1 e10
(dec, fra) = break (== ’.’) (show d ′)
(fra ′, exp) = break (== ’e’) fra

in spaces (3− length dec) ++ dec ++ take 11 fra ′

++ exp ++ spaces (12 − length fra ′ − length exp)

spaces :: Int → String
spaces n = take n (repeat ’ ’)

Figure 20.4: Helper Code for Pretty-Printing DFT Results

DFT in a more readable form.3

For example, suppose we want to take the DFT of a 16-sample represen-
tation of the first three terms of the square wave series. Typing the following
at the GHCi prompt:

printComplexL (dft (mkxc 16))

will yield the result of the DFT, pretty-printing each number as a pair, along
with its index:

0: ( 0.0 , 0.0 )

1: ( 0.0 , -0.5 )

2: ( 0.0 , 0.0 )

3: ( 0.0 , -0.1666666667 )

4: ( 0.0 , 0.0 )

5: ( 0.0 , -0.1 )

6: ( 0.0 , 0.0 )

3“Pretty-printing” real numbers is a subtle task. The code in Figure 20.4 rounds the
number to 10 decimal places of accuracy, and inserts spaces before and after to line up
the decimal points and give a consistent string length. The fractional part is not padded
with zeros, since that would give a false impression of its accuracy. (It is not necessary to
understand this code in order to understand the concepts in this chapter.)
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7: ( 0.0 , 0.0 )

8: ( 0.0 , 0.0 )

9: ( 0.0 , 0.0 )

10: ( 0.0 , 0.0 )

11: ( 0.0 , 0.1 )

12: ( 0.0 , 0.0 )

13: ( 0.0 , 0.1666666667 )

14: ( 0.0 , 0.0 )

15: ( 0.0 , 0.5 )

Let’s study this result more closely. For sake of argument, assume a
sample rate of 1.6 KHz. Then by construction using mkxc, our square-wave
input’s fundamental frequency is 100 Hz. Similarly, recall that the resolution
of the DFT is r /N , which is also 100 Hz.

Now compare the overall result to Figure 20.1b. Recalling also Equation
20.8, we note that the above DFT results are non-zero precisely at 100,
300, 500, -500, -300, and -100 Hz. This is just what we would expect.
Furthermore, the amplitudes are one-half of the corresponding harmonically
decreasing weights dictated by Equation 20.4, namely the values 1, 1/6, and
1/10 (recall the discussion in Section 20.2.2).

Let’s do another example. We can create an impulse function as follows:

mkPulse :: Int → [Complex Double ]
mkPulse n = 100 : take (n − 1) (repeat 0)

and print its DFT with the command:

printComplexL (dft (mkPulse 16))

whose effect is:

0: ( 6.25 , 0.0 )

1: ( 6.25 , 0.0 )

2: ( 6.25 , 0.0 )

3: ( 6.25 , 0.0 )

4: ( 6.25 , 0.0 )

5: ( 6.25 , 0.0 )

6: ( 6.25 , 0.0 )

7: ( 6.25 , 0.0 )

8: ( 6.25 , 0.0 )

9: ( 6.25 , 0.0 )

10: ( 6.25 , 0.0 )

11: ( 6.25 , 0.0 )

12: ( 6.25 , 0.0 )

13: ( 6.25 , 0.0 )
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14: ( 6.25 , 0.0 )

15: ( 6.25 , 0.0 )

Compare this to Figure 20.1c, and note how the original magnitude of
the impulse (100) is distributed evenly among the 16 points in the DFT
(100/16 = 6.25).

So far we have considered only input signals whose frequency compo-
nents are integral multiples of the DFT’s resolution. This rarely happens
in practice, however, because music is simply too complex, and noisy. As
mentioned in 20.2.1, the energy of the signals that “fall in the gaps” is dis-
tributed among neighboring points, although not in as simple a way as you
might think. To get some perspective on this, let’s do one other example.
We define a function to generate a signal whose frequeny is π times the
fundamental frequency:

x1 num = let f = pi ∗ 2 ∗ pi /fromIntegral num
in map (:+0) [sin (f ∗ fromIntegral i)

| i ← [0, 1 . . num − 1]]

π is an irrational number, but any number that “falls in the gaps” between
indices would do. We can see the result by typing the command:

printComplexL (dft x1)

which yields:

0: ( -7.9582433e-3 , 0.0 )

1: ( -5.8639942e-3 , -1.56630897e-2)

2: ( 4.7412105e-3 , -4.56112124e-2)

3: ( 0.1860052232 , -0.4318552865 )

4: ( -5.72962095e-2, 7.33993364e-2)

5: ( -3.95845728e-2, 3.14378088e-2)

6: ( -3.47994673e-2, 1.65400768e-2)

7: ( -3.29813518e-2, 7.4048103e-3 )

8: ( -3.24834325e-2, 0.0 )

9: ( -3.29813518e-2, -7.4048103e-3 )

10: ( -3.47994673e-2, -1.65400768e-2)

11: ( -3.95845728e-2, -3.14378088e-2)

12: ( -5.72962095e-2, -7.33993364e-2)

13: ( 0.1860052232 , 0.4318552865 )

14: ( 4.7412105e-3 , 4.56112124e-2)

15: ( -5.8639942e-3 , 1.56630897e-2)

This is much more complicated than the previous examples! Not only do
the points in the spectrum seem to have varying amounts of energy, they also
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have both non-zero real and non-zero imaginary components, meaning that
the magnitude and phase vary at each point. We can define a function that
converts a list of complex numbers into a list of their polar representations
as follows:

mkPolars :: [Complex Double ]→ [Complex Double ]
mkPolars = map ((λ(m, p) → m :+ p) ◦ polar )

which we can then use to reprint our result:

printComplexL (mkPolars (dft x1))

0: ( 7.9582433e-3 , 3.1415926536 )

1: ( 1.67247961e-2, -1.9290259418 )

2: ( 4.58569709e-2, -1.4672199604 )

3: ( 0.470209455 , -1.1640975898 )

4: ( 9.31145435e-2, 2.2336013741 )

5: ( 5.05497204e-2, 2.4704023271 )

6: ( 3.85302097e-2, 2.6979021519 )

7: ( 3.38023784e-2, 2.9207398294 )

8: ( 3.24834325e-2, -3.1415926536 )

9: ( 3.38023784e-2, -2.9207398294 )

10: ( 3.85302097e-2, -2.6979021519 )

11: ( 5.05497204e-2, -2.4704023271 )

12: ( 9.31145435e-2, -2.2336013741 )

13: ( 0.470209455 , 1.1640975898 )

14: ( 4.58569709e-2, 1.4672199604 )

15: ( 1.67247961e-2, 1.9290259418 )

If we focus on the magnitude (the first column), we can see that there is
a peak near index 3 (corresponding roughly to the frequency π), with small
amounts of energy elsewhere.

Exercise 20.1 Write a Haskell function idft that implements the inverse
DFT as captured in Equation 20.3. Test your code by applying idft to one
of the signals used earlier in this section. In other words, show empirically
that, up to round-off errors, idft (dft xs) == xs .

Exercise 20.2 Use dft to analyze some of the signals generated using signal
functions defined in Chapter 19.

Exercise 20.3 Define a functionmkSqWave::Int → Int → [Complex Double ]
such that mkSqWave num n is the sum of the first n terms of the Fourier
series of a square wave, having num samples in the result.
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Exercise 20.4 Prove mathematically that x and x̂ are inverses. Also prove,
using equational reasoning, that dft and idft are inverses. (For the latter
you may assume that Haskell numeric types obey the standard axioms of
real arithmetic.)

20.3 The Fast Fourier Transform

In the last section a DFT program was developed in Haskell that was easy to
understand, being a faithful translation of Equation 20.5. For pedogogical
purposes, this effort served us well. However, for practical purposes, the
program is inherently inefficient.

To see why, think of x[n] and x̂[k] as vectors. Thus, for example, each
element of x̂ is the sum of N multiplications of a vector by a complex
exponential (which can be represented as a pair, the real and imaginary
parts). And this overall process must be repeated for each value of k, also
N times. Therefore the overall time complexity of the implied algorithm
is O(N2). For even moderate values of N , this can be computationally
intractable. (Our choice of lists for the implementation of vectors makes the
complexity even worse, because of the linear-time complexity of indexing,
but the discussion below makes this a moot point.)

Fortunately, there exists a much faster algorithm called the Fast Fourier
Transform, or FFT, that reduces the complexity to O(N logN). This differ-
ence is quite significant for large values of N , and is the standard algorithm
used in most signal processing applications. We will not go into the details
of the FFT algorithm, other than to note that it is a divide-and-conquer
algorithm that depends on the vector size being a power of two.4

Rather than developing our own program for the FFT, we will instead
use the Haskell library Numeric.FFT to import a function that will do the
job for us. Specifically:

fft :: ...

With this function we could explore the use of the FFT on specific iinput
vectors, as we did earlier with dft .

However, our ultimate goal is to have a version of FFT that works on
signals. We would like to be able to specify the number of samples as a power

4The basic FFT algorithm was invented by James Cooley and John Tukey in 1965.
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of two (which we can think of as the “window size”), the clock rate, and
how often we would like to take a snapshot of the current window (and thus
successive windows may or may not overlap). The resulting signal function
takes a signal as input, and outputs events at the specified rate. Events are
discussed in more detail in Chapter 17.

Indeed, Euterpea provide this functionality for us in a function called
fftA:

fftA :: Int → Double → Int → SF Double (Event FFTData)
type FFTData = Map Double Double

SF is a signal function type similar to SigFun, except that it is targeted for
use in the Musical User Interface (MUI) discussed in detail in Chapter ??,
and thus, for example, does not have a clock rate. Map T1 T2 is an abstract
type that maps values of type T1 to values of type T2, and is imported from
Data.Map.

fftA winInt rate size is a signal function that, every winInt samples of
the input, creates a window of size 2ˆsize , and computes the FFT of that
window. For every such result, it issues an Event that maps from frequency
to magnitude (using the clock rate rate to determine the proper mapping).

Combining fftA with the MUI widgets discussed in Chapter ??, we can
write a simple program that generates a sine wave whose frequency is con-
trolledd by a slider, and whose real-time graph as well as its FFT are dis-
played. The program to do this is shown in Figure 20.5.

20.4 Further Pragmatics

Exercise 20.5 Modify the program in Figure 20.5 in the following ways:

1. Add a second slider, and use it to control the frequency of a second
oscillator.

2. Let s1 and s2 be the names of the signals whose frequencies are con-
trolled by the first and second sliders, respectively. Instead of display-
ing the FFT of just s1, try a variety of combinations of s1 and s2, such
as s1 + s2, s1 − s2, s1 ∗ s2, 1/s1 + 1/s2, and s1/s2. Comment on the
results.

3. Use s2 to control the frequency of s1 (as was done with vibrato in
Chapter 19). Plot the fft of s1 and comment on the result.
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fftEx ::UISF () ()
fftEx = proc → do

f ← hSlider (1, 2000) 440 −≺ ()
(d , )← clockedSFToUISF 100 simpleSig −≺ f
let (s,fft) = unzip d
← histogram (500, 150) 20−≺ listToMaybe (catMaybes fft)
← realtimeGraph ′ (500, 150) 200 20 Black −≺ s

outA −≺ ()
where
simpleSig :: SigFun CtrRate Double (Double,Event [Double ])
simpleSig = proc f → do

s ← osc (tableSinesN 4096 [1]) 0−≺ f
fftData ← fftA 100 256−≺ s
outA −≺ (s,fftData)

t0 = runMUI (500, 600) "fft Test" fftEx

Figure 20.5: A Real-Time Display of FFT Results

4. Instead of using osc to generate a pure sine wave, try using other
oscillators and/or table generators to create more complex tones, and
plot their FFT’s. Comment on the results.

20.5 References

Most of the ideas in this chapter can be found in any good textbook on signal
processing. The particular arrangement of the material here, in particular
Figure 20.1 and the development and demonstration of a program for the
DFT, is borrowed from the excellent text Elements of Computer Music by
Moore [Moo90].



Chapter 21

Additive and Subtractive
Synthesis

{-# LANGUAGE Arrows #-}
module Euterpea.Examples .Additive where
import Euterpea

There are many techniques for synthesizing sound. In this chapter we
will discuss two of them: additive synthesis and subtractive synthesis. In
practice it is rare for either of these, or any of the ones discussed in future
chapters, to be utilized alone—a typical application may in fact employ all
of them. But it is helpful to study them in isolation, so that the sound
designer has a suitably rich toolbox of techniques at his or her disposal.

Additive synthesis is, conceptually at least, the simplest of the many
sound synthesis techniques. Simply put, the idea is to add signals (usually
sine waves of differing amplitudes, frequencies and phases) together to form
a sound of interest. It is based on Fourier’s theorem as discussed in the
previous chapter, and indeed is sometimes called Fourier synthesis.

Subtractive synthesis is the dual of additive synthesis. The basic ideas
is to start with a signal rich in harmonoc content, and seletively “remove”
signals to create a desired effect.

In understanding the difference between the two, it is helpful to consider
the following analogy to art:

• Additive synthesis is like painting a picture—each stroke of the brush,
each color, each shape, each texture, and so on, adds to the artist’s

351
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conception of the final artistic artifact.

• In contract, subtractive synthesis is like creating a sculpture from
stone—each stroke of the chisel takes away material that is unwanted,
eventually revealing the artist’s conception of what the artistic artifact
should be.

Additive synthesis in the context of Euterpea will be discussed in Section
21.1, and substractive synthesis in Section 21.2.

21.1 Additive Synthesis

21.1.1 Preliminaries

When doing pure additive synthesis it is often convenient to work with a list
of signal sources whose elements are eventually summed together to form a
result. To facilitate this, we define a few auxiliary functions, as shown in
Figure 21.1.

constSF s sf simply lifts the value s to the signal function level, and
composes that with sf , thus yielding a signal source.

foldSF f b sfs is analogous to foldr for lists: it returns the signal source
constA b if the list is empty, and otherwise uses f to combine the results,
pointwise, from the right. In other words, if sfs has the form:

[sf1 , sf2 , ..., sfn ]

then the result will be:

proc ()→ do
s1 ← sf1 −≺ ()
s2 ← sf2 −≺ ()
...
sn ← sfn −≺ ()
outA−≺ f s1 (f s2 (...(f sn b)))
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constSF :: Clock c ⇒ a → SigFun c a b → SigFun c () b
constSF s sf = constA s >>> sf

foldSF :: Clock c ⇒
(a → b → b)→ b → [SigFun c () a ]→ SigFun c () b

foldSF f b sfs =
foldr g (constA b) sfs where
g sfa sfb =

proc ()→ do
s1 ← sfa −≺ ()
s2 ← sfb −≺ ()
outA−≺ f s1 s2

Figure 21.1: Working With Lists of Signal Sources

Details: constSF and foldSF are actually predefined in Euterpea, but with
slightly more general types:

constSF ::Arrow a ⇒ b → a b d → a c d
foldSF ::Arrow a ⇒ (b → c → c)→ c → [a () b ]→ a () c

The more specific types shown in Figure 21.1 reflect how we will use the functions

in this chapter.

21.1.2 Overtone Synthsis

Perhaps the simplest form of additive synthesis is combining a sine wave
with some of its overtones to create a rich sound that is closer in harmonic
content to that of a real instrument, as discussed in Chapter 18. Indeed,
in Chapter 19 we saw several ways to do this using built-in Euterpea signal
functions. For example, recall the function:

oscPartials :: Clock c ⇒
Table → Double → SigFun c (Double, Int) Double

oscPartials tab ph is a signal function whose pair of dynamic inputs deter-
mines the frequency, as well as the number of harmonics of that frequency,
of the output. So this is a “built-in” notion of additive synthesis. A problem
with this approach in modelling a conventional instrument is that the par-
tials all have the same strength, which does not reflect the harmonic content
of most physical instruments.

A more sophisticated approach, also described in Chapter 19, is based
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on various ways to build look-up tables. In particular, this function was
defined:

tableSines3 ::
TableSize → [(PartialNum ,PartialStrength ,PhaseOffset)]→ Table

Recall that tableSines3 size triples is a table of size size that represents a
sinusoidal wave and an arbitrary number of partials, whose relationship to
the fundamental frequency, amplitude, and phase are determined by each of
the triples in triples .

21.1.3 Resonance and Standing Waves

As we know from Fourier’s Theorem, any periodic signal can be represented
as a sum of a fundemental frequency and multiples of that fundamental fre-
quency. We also know that a musical instrument’s sound consists primarily
of the sum of a fundamental frequency (the preceived pitch) and some of the
multiples of that pitch (called harmonics, partials, or overtones). But what
is it that makes a musical instrument behave this way in the first place?
Answering this question can help us in understanding how to use additive
synthesis to generate an instrument sound, but becomes even more impor-
tant in Chapter ?? where we attempt to model the physical attributes of a
particular instrument.

String Instruments

To answer this question, let’s start with a simple string, fixed at both ends.
Now imagine that energy is inserted at some point along the string—perhaps
by a finger pluck, a guitar pick, a violin bow, or the hammer on a piano.
This energy will cause the string to vibrate in some way. The energy will
flow along the string as a wave, just like a pebble dropped in water, except
that the energy only flows in one dimension, i.e. only along the orientation
of the string. How fast the wave travels will depend on the string material
and how taut it is. For example, the tauter the string, the faster the wave
travels.

Because the ends of the string are fixed, however, the string can only
vibrate in certain ways, which are called modes, or resonances. The most
obvious mode for a string is shown in Figure 21.2a, where the center of
the string is moving up and down, say, and the end-points do not move at
all. Energy that is not directly contributing to a particular mode is quickly
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absorbed by the fixed endpoints. A mode is sometimes called a ”standing
wave” since it appears to be standing still—it does not seem to be moving
up or down the string. But another way to think of it is that the energy in
the string is being reflected back at each endpoint of the string, and those
reflections reinforce each other to form the standing wave.

Eventually, of course, even the energy in a mode will dissipate, for three
reasons: (1) since the ends of the string are never perfectly fixed, the re-
flections are not perfect either, and thus some energy is absorbed, (2) the
movement of the string creates friction in the string material, generating heat
and also absorbing energy, and (3) the transverse vibration of the string in-
duces a longitudinal vibration in the air—i.e. the sound we hear—and that
also absorbs some energy.

To better understand the nature of modes, suppose a pulse of energy
is introduced at one end of the string. If v is the velocity of the resulting
wave traveling along the string, and λ is the string length, then it takes λ/v
seconds for a wave to travel the length of the string, and p = 2λ/v for it
to travel up and back. So if the pulse is repeated every p seconds, it will
reinforce the previous pulse. If we think of p as the period of a periodic
signal, its frequency in Hertz is the reciprocol of the period p, namely:

f0 = v/(2λ)

Indeed, this is the frequency of the mode shown in Figure 21.2a, and corre-
sponds to the fundamental frequency, i.e. the observed pitch.

Image not in repository!

Figure 21.2: The Modes of a Stringed Instrument

But note that this is not the only possible mode—another is shown in
Figure 21.2b. This mode can be interpreted as repeating the pulse of energy
inserted at the end of the string every p/2 seconds, thus corresponding to a
frequency of:

f1 = 1/(p/2) = v/λ = 2f0

In other words, this is the first overtone.

Indeed, each subsequent mode corresponds to an overtone, and can be
derived in the same way. A pulse of energy every p/n seconds corresponds
to the (n-1)th overtone with frequency nf0 Hz. Figure 21.2 shows these
derivations for the first four modes; i.e. the fundamental plus three overtones.
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Note: The higher overtones generally—but not always—decay more
quickly primarily because they are generated by a quicker bending of the
string, causing more friction and a quicker loss of energy.

Wind Instruments

Resonances in other musical instruments behave similarly. But in the case of
a wind instrument, there a couple of important differences. First of all, the
resonance happens within the air itelf, rather than a string. For example, a
clarinet can be thought of as a cylindical tube closed at one end. The closed
end is the mouthpiece, and the open end is called the ”bell.” The closed end,
like the fixed end of a string, reflects energy directly back in the opposite
direction. But because the open end is open, it behaves differently. In
particular, as energy (a wave) escapes the open end, its pressure is dissipated
into the air. This causes a pressure drop that induces a negative pressure—
i.e. a vacumm—in the opposite direction, causing the wave to reflect back,
but inverted !

Unfortuntely, we cannot easily visualize the standing wave in a clarinet,
partly because the air is invisible, but also because, (1) the wave is longi-
tudinal, whereas for a string it is transverse, and (2) as just discussed, the
open end inverts the signal upon reflection. The best we can do is create
a transverse representation. For example, Figure 21.3a represents the fun-
damental mode, or fundamantal frequency. Note that the left, closed end
looks the same as for a fixed string—i.e. it is at the zero crossing of the sine
wave. But the right end is different—it is intended to depict the inversion
at the open end of the clarinet as the maximum absolute value of the sine
wave. If the signal comes in at +1, it is inverted to the value -1, and so on.

Analogously to our detailed analysis of a string, we can analyze a clar-
inet’s acoustic behavior as follows: Suppose a pulse of energy is introduced
at the mouthpiece (i.e. closed end). If v is the velocity of sound in the air,
and λ is the length of the clarinet, that wave appears at the open end in
λ/v seconds. Its inverted reflection then appears back at the mouthpiece in
2 ∗ λ/v seconds. But because it is inverted, it will cancel out another pulse
emitted 2 ∗ λ/v seconds after the first! On the other hand, suppose we let
that reflection bounce off the closed end, travel back to the open end to be
inverted a second time, and then return to the closed end. Two inversions
are like no inversion at all, and so if we were to insert another pulse of en-
ergy at that moment, the two signals will be ”in synch.” In other words, if
we repeat the pulse every 4λ/v seconds, the peaks and the troughs of the
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signals line up, and they will reinforce one another. This corresponds to a
frequency of:

f0 = v/(4λ)

and is in fact the fundamental mode, i.e. fundamental frequency, of the
clarinet. This situation corresponds precisely to Figure 21.3a.

Image not in repository!
Figure 21.3: The Modes of a Clarinet Seen as a Cylindrical Tube

Now here is the interesting part: If we were to double the pulse rate in
hopes of generating the first overtone, we arrive precisely at the situation we
were in above: the signals cancel out. Thus, a clarinet has no first overtone!
On the other hand, if we triple the pulse rate, the signals line up again,
corresponding to a frequency of:

f1 = v/((4/3)λ) = (3v)/(4λ) = 3f0

This is the clarinet’s second mode, and corresponds to Figure 21.3b.

By a similar argument, it can be shown that all the even overtones of
a clarinet don’t exist (or, equivalently, have zero amplitude), whereas all of
the odd overtones do exist. Figure 21.3 shows the first three modes of a
clarinet, corresponding to the fundamental frequency, and third and fifth
overtones. (Note, by the way, the similarity of this to the spectral content
of a square wave.)

[Todo: discuss other wind instruments]

Exercise 21.1 If ω = 2πf is the fundamental radial frequency, the sound
of a sustained note for a typical clarinet can be approximated [] by:

s(t) = sin(ωt) + 0.75 sin(3ωt) + 0.5 sin(5ωt) + 0.14 sin(7ωt)

+ 0.5 sin(9ωt) + 0.12 sin(11ωt) + 0.17 sin(13ωt)

Define an instrument clarinet :: Instr (Mono AudRate) that simulates this
sound. Add an envelope to it to make it more realistic. Then test it with a
simple melody.

21.1.4 Deviating from Pure Overtones

Sometimes, however, these built-in functions don’t achieve exactly what we
want. In that case, we can define our own, customized notion of additive
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synthesis, in whatever way we desire. For a simple example, traditional
harmony is the simultaneous playing of more than one note at a time, and
thus an instance of additive synthesis. More interestingly, richer sounds can
be created by using slightly “out-of-tune” overtones; that is, overtones that
are not an exact multiple of the fundamental frequency. For example:

-- TBD

This creates a kind of “chorusing” effect, very “electronic” in nature.

Some real instruments in fact exhibit this kind of behavior, and some-
times the degree of being “out of tune” is not quite fixed. Here’s a variation
of the above example where the detuning varies sinusoidally:

-- TBD

21.1.5 A Bell Sound

Synthesizing a bell or gong sound is a good example of “brute force” ad-
ditive synthesis. Physically, a bell or gong can be thought of as a bunch
of concentric rings, each having a different resonant frequency because they
differ in diameter depending on the shape of the bell. Some of the rings
will be more dominant than others, but the important thing to note is that
these resonant frequencies often do not have an integral relationship with
each other, and sometimes the higher frequencies can be quite strong, rather
than rolling off significantly as with many other instruments. Indeed, it is
sometime difficult to say exactly what the pitch of a particular bell is (es-
pecially large bells), so complex is its sound. Of course, the pitch of a bell
can be controlled by mimimizing the taper of its shape (especially for small
bells), thus giving it more of a pitched sound.

In any case, a pitched instrument representing a bell sound can be de-
signed using additive synthesis by using the instrument’s absolute pitch to
create a series of partials that are conspicuously non-integral multiples of the
fundamental. If this sound is then shaped by an envelope having a sharp rise
time and a relatively slow, exponentially decreasing decay, we get a decent
result. A Euterpea program to achieve this is shown in Figure 21.4. Note
the use of map to create the list of partials, and foldSF to add them to-
gether. Also note that some of the partials are expressed as fractions of the
fundamental—i.e. their frequencies are less than that of the fundamental!

The reader might wonder why we don’t just use one of Euterpea’s ta-
ble generating functions, such as tableSines3 discussed above, to generate
a table with all the desired partials. The problem is, even though the
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bell1 :: Instr (Mono AudRate)
-- Dur → AbsPitch → Volume → AudSF () Double

bell1 dur ap vol [ ] =
let f = apToHz ap

v = fromIntegral vol /100
d = fromRational dur
sfs = map (λp → constA (f ∗ p)>>> osc tab1 0)

[4.07, 3.76, 3, 2.74, 2, 1.71, 1.19, 0.92, 0.56]
in proc ()→ do

aenv ← envExponSeg [0, 1, 0.001] [0.003, d − 0.003]−≺ ()
a1 ← foldSF (+) 0 sfs −≺ ()
outA −≺ a1 ∗ aenv ∗ v /9

tab1 = tableSinesN 4096 [1]

bellTest1 = outFile "bell1.wav" 6 (bell1 6 (absPitch (C , 5)) 100 [ ])

Figure 21.4: A Bell Instrument

PartialNum argument to tableSines3 is a Double, the normal intent is that
the partial numbers all be integral. To see why, suppose 1.5 were one of the
partial numbers—then 1.5 cycles of a sine wave would be written into the
table. But the whole point of wavetable lookup synthesis is to repeatedly
cycle through the table, which means that this 1.5 cycle would get repeated,
since the wavetable is a periodic representation of the desired sound. The
situation gets worse with partials such as 4.07, 3.75, 2.74, 0.56, and so on.

In any case, we can do even better than bell1. An important aspect of
a bell sound that is not captured by the program in Figure 21.4 is that the
higher-frequency partials tend to decay more quickly than the lower ones.
We can remedy this by giving each partial its own envelope (recall Sec-
tion 19.3.2), and making the duration of the envelope inversely proportional
to the partial number. Such a more sophisticated instrument is shown in
Figure 21.5. This results in a much more pleasing and realistic sound.

Exercise 21.2 A problem with the more sophisticated bell sound in Fig-
ure 21.5 is that the duration of the resulting sound exceeds the specified
duration of the note, because some of the partial numbers are less than one.
Fix this.

Exercise 21.3 Neither of the bell sounds shown in Figures 21.4 and 21.5
actually contain the fundamental frequency—i.e. a partial number of 1.0.
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bell2 :: Instr (Mono AudRate)
-- Dur → AbsPitch → Volume → AudSF () Double

bell2 dur ap vol [ ] =
let f = apToHz ap

v = fromIntegral vol /100
d = fromRational dur
sfs = map (mySF f d)

[4.07, 3.76, 3, 2.74, 2, 1.71, 1.19, 0.92, 0.56]
in proc ()→ do

a1 ← foldSF (+) 0 sfs −≺ ()
outA −≺ a1 ∗ v /9

mySF f d p = proc ()→ do
s ← osc tab1 0<<< constA (f ∗ p)−≺ ()
aenv ← envExponSeg [0, 1, 0.001 ] [0.003, d/p − 0.003]−≺ ()
outA−≺ s ∗ aenv

bellTest2 = outFile "bell2.wav" 6 (bell2 6 (absPitch (C , 5)) 100 [ ])

Figure 21.5: A More Sophisticated Bell Instrument

Yet they contain the partials at the integer multiples 2 and 3. How does
this affect the result? What happens if you add in the fundamental?

Exercise 21.4 Use the idea of the “more sophisticated bell” to synthesize
sounds other than a bell. In particular, try using only integral multiples of
the fundamental frequency.

21.2 Subtractive Synthesis

As mentioned in the introduction to this chapter, subtractive synthesis in-
volves starting with a harmonically rich sound source, and selectively taking
away sounds to create a desired effect. In signal processing terms, we “take
away” sounds using filters.

21.2.1 Filters

Filters can be arbitrarily complex, but are characterized by a transfer func-
tion that captures, in the frequency domain, how much of each frequency
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component of the input is transferred to the output. Figure 21.6 shows the
general transfer function for the four most common forms of filters:

Image not in repository!
Figure 21.6: Transfer Functions for Four Common Filter Types

1. A low-pass filter passes low frequencies and rejects (i.e. attenuates)
high frequencies.

2. A high-pass filter passes high frequencies and rejects (i.e. attenuates)
low frequencies.

3. A band-pass filter passes a particular band of frequencies while reject-
ing others.

4. A band-reject (or band-stop, or notch) filter rejects a particular band
of frequencies, while passing others.

It should be clear that filters can be combined in sequence or in parallel
to achieve more complex transfer functions. For example, a low-pass and
a high-pass filter can be combined in sequence to create a band-pass filter,
and can be combined in parallel to create a band-reject filter.

In the case of a low-pass or high-pass filter, the cut-off frequency is
usually defined as the point at which the signal is attenuated by 6dB. A
similar strategy is used to define the upper and lower bounds of the band
that is passed by a band-pass filter or rejected by a band-reject filter, except
that the band is usually specified using a center frequency (the midpoint of
the band) and a bandwidth the width of the band).

It is important to realize that not all filters of a particular type are
alike. Two low-pass filters, for example, may, of course, have different cutoff
frequencies, but even if the cutoff frequencies are the same, the “steepness”
of the cutoff curves may be different (a filter with an ideal step curve for its
transfer function does not exist), and the other parts of the curve might not
be the same—they are never completely flat or even linear, and might not
even be monotonically increasing or decreasing. (Although the diagrams in
Figure 21.6 at least do not show a step curve, they are stll over-simplified
in the smoothness and flatness of the curves.) Furthermore, all filters have
some degree of phase distortion, which is to say that the transferred phase
angle can vary with frequency.
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filterLowPass ,filterHighPass ,filterLowPassBW ,filterHighPassBW ::
Clock p ⇒ SigFun p (Double,Double) Double

filterBandPass ,filterBandStop ::
Clock p ⇒ Int → SigFun p (Double,Double,Double) Double

filterBandPassBW ,filterBandStopBW ::
Clock p ⇒ SigFun p (Double,Double,Double) Double

Figure 21.7: Euterpea’s Filters

In the digital domain, filters are often described using recurrence equa-
tions of varying degrees, and there is an elegant theory of filter design that
can help predict and therefore control the various characteristics mentioned
above. However, this theory is beyond the scope of this textbook. A good
book on digital signal processing will elaborate on these issues in detail.

21.2.2 Euterpea’s Filters

Instead of designing our own filters, we will use a set of pre-defined filters
in Euterpea that are adequate for most sound synthesis applications. Their
type sinatures are shown in Figure 21.7. As you can see, each of the filter
types discussed previously is included, but their use requires a bit more
explanation.

First of all, all of the filters ending in “BW ” are what are called Butter-
worth filters, which are based on a second-order filter design that represents
a good balance of filter characteristics: a good cutoff steepness, little phase
distortion, and a reasonably flat response in both the pass and reject regions.
Those filters without the BW suffix are first-order filters whose characteris-
tics are not quite as good as the Butterworth filters, but are computationally
more efficient.

In addition, the following points help explain the details of specific Eu-
terpea filters:

• filterLowPass is a signal function whose input is a pair consisting of
the signal being filtered, and the cutoff frequency (in that order).
Note that this means the cutoff frequency can be varied dynamically.
filterHighPass , filterLowPassBW , and filterHighPassBW behave anal-
ogously.

• filterBandPassBW is a signal function taking a triple as input: the
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signal being filtered, the center frequency of the band, and the width
of the band, in that order. For example:

...
filterBandPassBW −≺ (s, 2000, 100)
...

will pass the frequencies in s that are in the range 1950 to 2050 Hz,
and reject the others. filterBandStop behaves analogously.

• filterBandPass and filterBandStop also behave analogously, except
that they take a static Int argument, let’s call it m, that has the
following effect on the magnitude of the output:

– m = 0 signifies no scaling of the output signal.

– m = 1 signifies a peak response factor of 1; i.e. all frequencies
other than the center frequency are attenuated in accordance with
a normalized response curve.

– m = 2 raises the response factor so that the output signal’s overall
RMS value equals 1.

21.2.3 Noisy Sources

Returning to the art metaphor at the beginning of this chapter, filters are
like the chisels and other tools that a sculptor might use to fashion his or
her work. But what about the block of stone that the sculptor begins with?
What is the sound synthesis analogy to that?

The answer is some kind of a “noisy signal.” It does not have to be pure
noise in a signal processing sense, but in general its frequency spectrum will
be rather broad and dense. Indeed, we have already seen (but not discussed)
one way to do this in Euterpea: Recall the table generators tableSines ,
tableSinesN , tableSines3 , and tableSines3N . When used with osc, these
can generate very dense series of partials, which in the limit sound like pure
noise.

In addition, Euterpea provides three sources of pure noise, that is, noise
derived from a random number generator: noiseWhite , noiseBLI , and noiseBLH .
More specifically:

1. noiseWhite :: Clock p ⇒ Int → SigFun p () Double
noiseWhite n is a signal source that generates uniform white noise



CHAPTER 21. ADDITIVE AND SUBTRACTIVE SYNTHESIS 364

with an RMS value of 1/
√
2, where n is the “seed” of the underlying

random number generator.

2. noiseBLI :: Clock p ⇒ Int → SigFun p Double Double
noiseBLI n is like noiseWhite n except that the signal samples are
generated at a rate controlled by the (dynamic) input signal (presum-
ably less than 44.1kHz), with interpolation performed between sam-
ples. Such a signal is called “band-limited” because the slower rate
prevents spectral content higher than half the rate.

3. noiseBLH :: Clock p ⇒ Int → SigFun p Double Double
noiseBLH is like noiseBLI but does not interpolate between samples;
rather, it “holds” the value fo the last sample.

21.2.4 Examples

sineTable :: Table
sineTable = tableSinesN 4096 [1]

env1 :: AudSF () Double
env1 = envExpon 20 10 10000

envExpon is better than envLine for sweeping a range of frequencies,
because our ears hear pitches logarithmically. To demonstrate:

good = outFile "good.wav" 10
(osc sineTable 0<<< envExpon 20 10 10000 ::AudSF () Double)

bad = outFile "bad.wav" 10
(osc sineTable 0<<< envLine 20 10 10000 :: AudSF () Double)

Helper function for filter tests:

sfTest1 :: AudSF (Double,Double) Double → Instr (Mono AudRate)
-- AudSF (Double,Double) Double →
-- Dur → AbsPitch → Volume → [Double ]→ AudSF () Double

sfTest1 sf dur ap vol [ ] =
let f = apToHz ap
v = fromIntegral vol /100

in proc ()→ do
a1 ← osc sineTable 0<<< env1 −≺ ()
a2 ← sf −≺ (a1, f )
outA −≺ a2 ∗ v

Tests for low and highpass filters:
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tLow = outFile "low.wav" 10 $
sfTest1 filterLowPass 10 (absPitch (C , 5)) 80 [ ]

tHi = outFile "hi.wav" 10 $
sfTest1 filterHighPass 10 (absPitch (C , 5)) 80 [ ]

tLowBW = outFile "lowBW.wav" 10 $
sfTest1 filterLowPassBW 10 (absPitch (C , 5)) 80 [ ]

tHiBW = outFile "hiBW.wav" 10 $
sfTest1 filterHighPassBW 10 (absPitch (C , 5)) 80 [ ]

Tests for bandpass and bandstop filters (varying center frequency):

addBandWidth ::AudSF (Double,Double,Double) Double →
AudSF (Double,Double) Double

addBandWidth filter =
proc (a, f )→ do filter −≺ (a, f , 200)

tBP = outFile "bp.wav" 10 $
sfTest1 (addBandWidth (filterBandPass 1)) 10 (absPitch (C , 6)) 80 [ ]

tBS = outFile "bs.wav" 10 $
sfTest1 (addBandWidth (filterBandStop 1)) 10 (absPitch (C , 6)) 80 [ ]

tBPBW = outFile "bpBW.wav" 10 $
sfTest1 (addBandWidth filterBandPassBW ) 10 (absPitch (C , 6)) 80 [ ]

tBSBW = outFile "bsBW.wav" 10 $
sfTest1 (addBandWidth filterBandStopBW ) 10 (absPitch (C , 6)) 80 [ ]

Pure white noise:

noise1 :: Instr (Mono AudRate)
-- Dur → AbsPitch → Volume → [Double ]→ AudSF () Double

noise1 dur ap vol [ ] =
let v = fromIntegral vol /100
in proc ()→ do

a1 ← noiseWhite 42 −≺ ()
outA −≺ a1 ∗ v

test1 = outFile "noise1.wav" 6 (noise1 6 (absPitch (C , 5)) 100 [ ])

Tests for bandpass and bandstop filters (varying bandwidth):

env2 :: AudSF () Double
env2 = envExpon 1 10 2000

sfTest2 ::AudSF (Double,Double,Double) Double → Instr (Mono AudRate)
-- AudSF (Double,Double,Double) Double →



CHAPTER 21. ADDITIVE AND SUBTRACTIVE SYNTHESIS 366

-- Dur → AbsPitch → Volume → [Double ]→ AudSF () Double
sfTest2 sf dur ap vol [ ] =

let f = apToHz ap
v = fromIntegral vol /100

in proc ()→ do
a1 ← noiseWhite 42−≺ ()
bw ← env2 −≺ ()
a2 ← sf −≺ (a1, f , bw )
outA−≺ a2

tBP ′ = outFile "bp’.wav" 10 $
sfTest2 (filterBandPass 1) 10 (absPitch (C , 5)) 80 [ ]

tBS ′ = outFile "bs’.wav" 10 $
sfTest2 (filterBandStop 1) 10 (absPitch (C , 5)) 80 [ ]

tBPBW ′ = outFile "bpBW’.wav" 10 $
sfTest2 filterBandPassBW 10 (absPitch (C , 5)) 80 [ ]

tBSBW ′ = outFile "bsBW’.wav" 10 $
sfTest2 filterBandStopBW 10 (absPitch (C , 5)) 80 [ ]

Bandlimited noise:

noise2 :: Instr (Mono AudRate)
noise2 dur ap vol [ ] =

let f = apToHz ap
v = fromIntegral vol /100

in proc ()→ do
a1 ← noiseBLI 42−≺ f
outA −≺ a1 ∗ v

test2 = outFile "noise2.wav" 6 (noise2 6 (absPitch (C , 5)) 100 [ ])

Simple subtractive synthesis:

ss1 :: Instr (Mono AudRate)
ss1 dur ap vol [ ] =

let v = fromIntegral vol /100
in proc ()→ do

a1 ← noiseWhite 42−≺ ()
a2 ← filterBandPass 2−≺ (a1, 1000, 200)
outA −≺ a2 ∗ v /5

test3 = outFile "ss1.wav" 6 (ss1 6 (absPitch (C , 5)) 100 [ ])

Howling wind:
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wind :: Instr (Mono AudRate)
wind dur ap vol [ ] =

let f = apToHz ap
v = fromIntegral vol /100

in proc ()→ do
a1 ← noiseWhite 42−≺ ()
lfo1 ← osc sineTable 0−≺ 0.9
lfo2 ← osc sineTable 0−≺ 1.3
a2 ← filterBandPass 2−≺ (a1, f + 100 ∗ (lfo1 + lfo2 ), 200)
outA −≺ a2 ∗ v /5

test4 = outFile "wind.wav" 6 (wind 6 (absPitch (C , 7)) 100 [ ])

Dense partials (”buzz”)

buzzy :: Instr (Mono AudRate)
buzzy dur ap vol [ ] =

let f = apToHz ap
v = fromIntegral vol /100

in proc ()→ do
a1 ← oscPartials sineTable 0−≺ (f , 20)
outA −≺ a1 ∗ v

test5 = outFile "buzzy.wav" 6 (buzzy 6 (absPitch (C , 5)) 100 [ ])

Dense partials filtered and Shaped:

buzzy2 :: Instr (Mono AudRate)
buzzy2 dur ap vol [ ] =

let f = apToHz ap
v = fromIntegral vol /100
d = fromRational dur

in proc ()→ do
a1 ← oscPartials sineTable 0−≺ (f , 20)
env ← envExponSeg [0, 1, 0.001] [0.003, d − 0.003]−≺ ()
a2 ← filterLowPass −≺ (a1, 20000 ∗ env)
outA −≺ a2 ∗ v ∗ env

test6 = outFile "buzzy2.wav" 6 (buzzy2 6 (absPitch (C , 5)) 100 [ ])

Sci-Fi-1:

scifi1 :: Instr (Mono AudRate)
scifi1 dur ap vol [ ] =

let v = fromIntegral vol /100
in proc ()→ do
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a1 ← noiseBLH 42−≺ 8
a2 ← osc sineTable 0−≺ 600 + 200 ∗ a1
outA −≺ a2 ∗ v

test7 = outFile "scifi1.wav" 10 (scifi1 10 (absPitch (C , 5)) 100 [ ])

Sci-Fi-2:

scifi2 :: Instr (Mono AudRate)
scifi2 dur ap vol [ ] =

let v = fromIntegral vol /100
in proc ()→ do

a1 ← noiseBLI 44−≺ 8
a2 ← osc sineTable 0−≺ 600 + 200 ∗ a1
outA −≺ a2 ∗ v

test8 = outFile "scifi2.wav" 10 (scifi2 10 (absPitch (C , 5)) 100 [ ])

‘



Chapter 22

Amplitude and Frequency
Modulation

To modulate something is to change it in some way. In signal processing,
amplitude modulation is the process of modifying a signal’s amplitude by
another signal. Similarly, frequency modulation is the process of modify-
ing a signal’s frequency by another signal. These are both powerful sound
synthesis techniques that will be discussed in this chapter.

22.1 Amplitude Modulation

Technically speaking, whenever the amplitude of a signal is dynamically
changed, it is a form of amplitude modulation, or AM for short; that is,
we are modulating the amplitude of a signal. So, for example, shaping a
signal with an envelope, as well as adding tremolo, are both forms of AM.
In this section more interesting forms of AM are explored, including their
mathematical basis. To help distinguish these forms of AM from others, we
define a few terms:

• The dynamically changing signal that is doing the modulation is called
the modulating signal.

• The signal being modulated is sometimes called the carrier.

• A unipolar signal is one that is always either positive or negative (usu-
ally positive).

369



CHAPTER 22. AMPLITUDE AND FREQUENCY MODULATION 370

• A bipolar signal is one that takes on both positive and negative values
(that are often symmetric and thus average out to zero over time).

So, shaping a signal using an envelope is an example of amplitude modu-
lation using a unipolar modulating signal whose frequency is very low (to be
precise, 1/dur, where dur is the length of the note), and in fact only one cycle
of that signal is used. Likewise, tremolo is an example of amplitude mod-
ulation with a unipolar modulating signal whose frequency is a bit higher
than with envelope shaping, but still quite low (typically 2-10 Hz). In both
cases, the modulating signal is infrasonic.

Note that a bipolar signal can be made unipolar (or the other way
around) by adding or subtracting an offset (sometimes called a “DC off-
set,” where DC is shorthand for “direct current”). This is readily seen if we
try to mathematically formalize the notion of tremolo. Specifically, tremolo
can be defined as adding an offset of 1 to an infrasonic sine wave whose
frequency is ft (typically 2-10Hz), multiplying that by a “depth” argument
d (in the range 0 to 1), and using the result as the modulating signal; the
carrier frequency is f :

(1 + d× sin(2πftt))× sin(2πft)

Based on this equation, here is a simple tremolo envelope generator writ-
ten in Euterpea, and defined as a signal source (see Exercise 19.2):

tremolo :: Clock c ⇒
Double → Double → SigFun c () Double

tremolo tfrq dep = proc ()→ do
trem ← osc tab1 0−≺ tfrq
outA−≺ 1 + dep ∗ trem

tremolo can then be used to modulate an audible signal as follows:

-- TBD

22.1.1 AM Sound Synthesis

But what happens when the modulating signal is audible, just like the car-
rier signal? This is where things get interesting from a sound synthesis
point of view, and can result in a rich blend of sounds. To understand this
mathematically, recall this trigonometric identity:
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sin(C)× sin(M) =
1

2
(cos(C −M)− cos(C +M))

or, sticking entirely with cosines:

cos(C)× cos(M) =
1

2
(cos(C −M) + cos(C +M))

These equations demonstrate that AM in a sense is just a form addi-
tive synthesis. Indeed, the equations imply two ways to implement AM
in Euterpea: We could directly multiply the two outputs, as specified by
the left-hand sides of the equations above, or we could add two signals as
specified by the right-hand sides of the equations.

Note the following:

1. When the modulating frequency is the same as the carrier frequency,
the right-hand sides above reduce to 1/2 cos(2C). That is, we essentially
double the frequency.

2. Since multiplication is commutative, the following is also true:

cos(C)× cos(M) =
1

2
(cos(M − C) + cos(M + C))

which is valid because cos(t) = cos(−t).

3. Scaling the modulating signal or carrier just scales the entire signal,
since multiplication is associative.

Also note that adding a third modulating frequency yields the following:

cos(C)× cos(M1)× cos(M2)
= (0.5× (cos(C −M1)× cos(C +M1))) × cos(M2)
= 0.5× (cos(C −M1)× cos(M2) + cos(C +M1)× cos(M2))
= 0.25× (cos(C −M1−M2) + cos(C −M1 +M2)+

cos(C +M1−M2) + cos(C +M1 +M2))

In general, combining n signals using amplitude modulation results in
2n−1 signals. AM used in this way for sound synthesis is sometimes called
ring modulation, because the analog circuit (of diodes) originally used to
implement this technique took the shape of a ring. Some nice “bell-like”
tones can be generated with this technique.
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22.1.2 What do Tremolo and AM Radio Have in Common?

Combining the previous two ideas, we can use a bipolar carrier in the elec-
tromagnetic spectrum (i.e. the radio spectrum) and a unipolar modulating
frequency in the audible range, which we can represent mathematically as:

cos(C)× (1 + cos(M)) = cos(C) + 0.5× (cos(C −M) + cos(C +M))

Indeed, this is how AM radio works. The above equation says that AM
radio results in a carrier signal plus two sidebands. To completely cover
the audible frequency range, the modulating frequency would need to be as
much as 20kHz, thus yielding sidebands of ±20kHz, thus requiring station
separation of at least 40 kHz. Yet, note that AM radio stations are separated
by only 10kHz! (540 kHz, 550 kHz, ..., 1600 kHz). This is because, at the
time commercial AM radio was developed, a fidelity of 5KHz was considered
“good enough.”

Also note now that the amplitude of the modulating frequency does
matter:

cos(C)×(1+A×cos(M)) = cos(C)+0.5×A×(cos(C−M)+cos(C+M))

A, called the modulation index, controls the size of the sidebands. Note
the similarity of this equation to that for tremolo.

Exercise 22.1 Experiment with amplitude modulation as a sound synthe-
sis technique. In particular, try using three or more signals.

22.2 Frequency Modulation

[This section needs work.]

As mentioned in the introduction of this chapter, if we modulate the
frequency (rather than amplitude) of a signal with another signal, we are
performing frequency modulation, or FM.

FM can be used to implement vibrato. [show code] Contrast this with
tremolo, which varies the amplitude. [show code?] It is also the basis for
FM radio. [see later subsection]
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More generally, FM with two audible signals causes complex things hap-
pen, and results in a much richer sound than AM. In its simplest form, we
can express FM as follows:

A cos(C + d cos(M))

where, as for AM, C is the carrier frequency, and M is the modulating
frequency (both in radians).

The result of FM is a carrier plus a large number of sidebands that
are integer multiples of the difference between C and M, as depicted in
Figure 22.1. But how many and how large are these sidebands?

22.2.1 Bessell Functions

Let’s rewrite the previous formula more formally as follows:

sfm(t) = A cos(2π(fc + d cos(2πfm t))t)

where fc and fm are the frequencies, in Hertz, of the carrier and modulating
signals, respectively. As we will see, A and d relate to the magnitude of the
carrier and sidebands.

The FM modulation index I is defined as:

I = D/fm

where D is the maximum deviation in Hertz of the carrier. For example, if
the modulating signal fm is a pure sine wave, then it varies between +1 and
−1, so the maximum deviation would be d, and therefore I = d/fm.

The equation for sfm above is difficult to understand, being the cosine
of a cosine, but it can be shown to be equivalent to the following sum of
sines:

sfm(t) =

+∞
∑

n=−∞

Jn(I) sin(2π(fc ± nfm) t)

where Jn is the nth Bessell function. Ignoring the scaling effect of the Bessell
function for a moment, note that the resulting signal consists of the carrier
(at n = 0) plus sidebands spaced evenly at increments of the modulating
frequency fm.

Bessell functions themselves are beyond the scope of this text, but can
be visualized as shown in Figure 22.2. In this figure, note that:

• ...
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22.2.2 FM Sound Synthesis

From a sound synthesis point of view, it is important to realize that, for
many carrier and modulating frequency pairs, the spectrum of the result
is quite complex, far more than for, say, amplitude modulation or additive
synthesis. Indeed, according to equation ??, there are an infinite number of
sidebands.

The generic Euterpea arrow-code snippet corresponding to Equation ??
is:

...
ms ← osc ... −≺mf
s ← osc ... −≺ cf + d ∗ms
outA−≺ a ∗ s
...

where cf and mf are the carrier and modulating frequencies, respectively,
and ms is the modulating signal.

[show UISF example; explain d, etc.]

[give examples where the carrier, modulating frequency, and modulation
index are “swept” appropriately]

Here are some “rules of thumb” that are useful in selecting the modula-
tion index:

• To synthesize harmonic sounds, the modulating signal should have a
harmonic relationship to the original carrier signal.

• Use of modulating frequencies that are non-integer multiples of the
carrier results in inharmonic sounds, which are nevertheless interesting
and pleasant sounding in their own way.

• A low modulation index results in sidebands that are “tight” near the
carrier, but the variations between them can be large.

• A higher mod index results in more sidebands at a greater distance
from the carrier, but they are more uniform in size.

• In addition, as I increases, the drop-off in sidebands is not uniform;
in fact it is sinusoidal, so there are regions where the sidebands drop
out completely, then reappear further away from the carrier.

• Carson’s rule states that nearly all ( 98 percent) of the power of a
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frequency-modulated signal lies within a bandwidth of:

BT = 2(∆f + fm)

where ∆f , is the peak deviation of the instantaneous frequency from
the carrier frequency fc.

FM synthesis is a powerful methodolgy for musical sound design. There
are many ways to create both real musical instrument sounds and ethereal
ones. Even the seminal paper on FM sound synthesis [Cho73] written over
40 years ago gives great insight into this.

22.2.3 An FM Bell

By creating inharmonic sounds, atonal and tonal bell-like and percussive
sounds can easily be created. Figure 22.3 shows a Euterpea program for
an FM bell. Note that the pitch f of the bell is used as both the carrier
frequency, and, slightly modified, as the modulating frquency. That mod-
ulating frequency varies sinusoidally from ... Note that d in this case is ...
This is strange!

22.2.4 FM Radio

Reword:

The FM broadcasting range is 87.5-108 MHz. It uses a channel spacing
of 200 kHz, with a maximum frequency deviation of 75 kHz, leaving a 25 kHz
buffer above the highest and below the lowest frequency to reduce interaction
with other channels.
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Figure 22.1: FM Spectrum

Figure 22.2: Three-Dimensional Graph of First Fifteen Bessell Functions
.

bellFM :: Instr (Mono AudRate)
bellFM dur ap vol [ ] =

let f = apToHz ap
v = fromIntegral vol /100
d = fromRational dur

in proc ()→ do
aenv ← envExponSeg [0, 1, 0.001] [0.003, d − 0.003]−≺ ()
a2 ← osc tab1 0−≺ 280
a1 ← osc tab1 0−≺ f + (a2 ∗ f ∗ 0.95)
outA −≺ a1 ∗ aenv ∗ v

bellTest = outFile "bellFM.wav" 6 (bellFM 6 (absPitch (G , 4)) 80 [ ])

Figure 22.3: An FM Bell
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Physical Modelling

23.1 Introduction

...

23.2 Delay Lines

An important tool for physical modeling is the delay line. In this section we
will discuss the basic concepts of a delay line, the delay line signal functions
in Eutperpea, and a couple of fun examples that do not yet involve physical
modeling.

Conceptually, a delay line is fairly simple: it delays a signal by a certain
number of seconds (or, equivalently, by a certain number of samples at some
given sample rate). Figure ??(a) show this pictorially—if s is the number of
samples in the delay line, and r is the clock rate, then the delay d is given
by:

d = s/r

In the case of audio, of course, r will be 44.1 kHz. So to achieve a one-second
delay, s would be chosen to be 44,100. In essence, a delay line is a queue or
FIFO data structure.

In Euterpea there is a family of delay lines whose type signatures are
given in Figure 23.1. Their behaviors can be described as follows:

• init x is a delay line with one element, which is initalized to x .

377
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Unit delay line:
init :: Clock c ⇒

Double → SigFun c Double Double
Fixed-length delay line, initialized with a table:

delayLineT :: Clock c ⇒
Int → Table → SigFun c Double Double

Fixed-length delay line, initialized with zeros:
delayLine :: Clock c ⇒

Double → SigFun c Double Double
Delay line with variable tap:

delayLine1 :: Clock c ⇒
Double → SigFun c (Double,Double) Double

Figure 23.1: Euterpea’s Delay Lines

• delayLineT s tab is a delay line whose length is s and whose contents
are initialized to the values in the table tab (presumably of length s).

• delayLine d is a delay line whose length achieves a delay of d seconds.

• delayLine1 d is a “tapped delay line” whose length achieves a max-
imum delay of d seconds, but whose actual output is a “tap” that
results in a delay of somewhere between 0 and d seconds. The tap is
controlled dynamically. For example, in:

...
out ← delayLine1 d −≺ (s, t)
...

s is the input signal, and t is the tap delay, which may vary between
0 and d .

Before using delay lines for physical modelling, we will explore a few
simple application that should give the reader a good sense of how they
work.

Image not in repository!

Figure 23.2: Delay Line Examples
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23.2.1 Simulating an Oscillator

Let’s contrast a delay line to the oscillators introduced in Chapter 19 that
are initialized with a table (like osc). These oscillators cycle repetitively
through a given table at a variable rate. Using delayT , a delay-line can also
be initialized as a table, but it is processed at a fixed rate (i.e. the clock
rate)—at each step, one value goes in, and one goes out.

Nevertheless, we can simulate an oscillator by initializing the delay line
with one cycle of a sine wave, and “feeding back” the output to the input,
as shown in Figure 23.2a. At the standard audio sample rate, if the table
size is s, then it takes s/44, 100 seconds to output one cycle, and therefore
the resulting frequency is the reciprocol of that:

f = 44, 100/s

There is one problem, however: when coding this idea in Haskell, we’d
like to write something like:

...
x ← delayLineT s table −≺ x
...

However, arrow syntax in its standard form does not allow recursion! Fortu-
nately, arrow syntax supports a keyword rec that allows us to specify where
recursion takes place. For example to generate a tone of 441 Hz we need a
table size of 44,100/441 = 100, leading to:

sineTable441 :: Table
sineTable441 = tableSinesN 100 [1]

s441 ::AudSF () Double
s441 = proc ()→ do

rec s ← delayLineT 100 sineTable441 −≺ s
outA−≺ s

ts441 = outFile "s441.wav" 5 s441

Details: Say more about the rec keyword.
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23.2.2 Echo Effect

Perhaps a more obvious use of a delay line is to simply delay a signal! But
to make this more exciting, let’s go one step further and echo the signal,
using feedback. To prevent the signal from echoing forever, let’s decay it a
bit each time it is fed back. A diagram showing this strategy is shown in
Figure 23.2b, and the resulting code is:

echo :: AudSF Double Double
echo = proc s → do

rec fb ← delayLine 0.5−≺ s + 0.7 ∗ fb
outA−≺ fb/3

Here the delay time is 0.5 seconds, and the decay rate is 0.7.

[test code?]

23.2.3 Modular Vibrato

Recall that we previously defined a tremolo signal function that could take
an arbitrary signal and add tremolo. This is because tremolo simply mod-
ulates the amplitude of a signal, which could be anything—music, speech,
whatever—and can be done after that sound is generated. So we could define
a function:

tremolo ::Rate → Depth → AudSF Double Double

to achieve the result we want.

Can we do the same for vibrato? In the version of vibrato we defined pre-
viously (see Section ??), we used frequency modulation—but that involved
modulating the actual frequency of a specific oscillator, not the output of
the oscillator that generated a sine wave of that frequency. So using that
technique, at least, it doesn’t seem possible to define a function such as:

vibrato :: Rate → Depth → AudSF Double Double

that would achieve our needs. Indeed, if we were using additive synthesis,
one might imagine having to add vibrato to every sine wave that makes up
the result. Not only is this a daunting task, but, in effect, we would lose
modularity!

But in fact we can define a “modular” vibrato using a delay line with a
variable tap. The idea is this: Send a signal into a tapped delay line, adjust
the initial tap to the center of that delay line, and then move it back and
forth sinusoidally at a certain rate to control the frequency of the vibrato,
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Image not in repository!

Figure 23.3: Karplus-Strong and Waveguides

and move it a certain distance (with a maximum of one-half the delay line’s
maximum delay) to achieve the depth. This idea is shown pictorially in
Figure 23.2c, and the code is given below:

vibrato :: Rate → Depth → AudSF Double Double
modVib :: AudSF Double Double
modVib rate depth =

proc sin → do
vib ← osc sineTable 0−≺ rate
sout ← delayLine1 0.2 −≺ (sin , 0.1 + 0.005 ∗ vib)
outA −≺ sout

tModVib = outFile "modvib.wav" 6 $$
constA 440 >>> osc sineTable 0>>> vibrato 5 0.005

–

[discuss problem with “noisy” output, and with initial delay]

23.3 Karplus-Strong Algorithm

Now that we know how delay lines work, let’s look at their use in physical
modeling. The Karplus-Strong Algorithm [KS83] was one of the first algo-
rithms classified as “physical modeling.” It’s a good model for synthesizing
plucked strings and drum-like sounds. The basic idea is to use a recursive
delay line to feed back a signal onto itself, thus simulating the standing
wave modes discussed in Section 21.1.3. The result is affected by the initial
values in the delay line, the length of the delay line, and any processing
in the feedback loop. A diagram that depicts this algorithm is shown in
Figure 23.3(a).

23.3.1 Physical Model of a Flute

Figure 23.4 shows a physical model of a flute, based on the model of a
“slide flute” proposed by Perry Cook in [Coo02]. Although described as
a slide flute, it sounds remarkably similar a regular flute. Note that the
lower right part of diagram looks just like the feedback loop in the Karplus-
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Image not in repository!

Figure 23.4: A Physical Model of a Flute

Strong algorithm. The rest of the diagram is intended to model the breath,
including vibrato, which drives a “pitched” embouchure that in turn drives
the flute bore.

The Euterpea code for this model is essentially a direct translation of the
diagram, with details of the envelopes added in, and is shown in Figure 23.5.
Some useful test cases are:

f0 = flute 3 0.35 440 0.93 0.02 -- average breath
f1 = flute 3 0.35 440 0.83 0.05 -- weak breath, soft note
f2 = flute 3 0.35 440 0.53 0.04 -- very weak breath, no note

23.4 Waveguide Synthesis

The Karplus-Strong algorithm can be generalized to a more accurate model
of the transmission of sound up and down a medium, whether it be a string,
the air in a chamber, the surface of a drum, the metal plate of a xylo-
phone, and so on. This more accurate model is called a waveguide, and,
mathematically, can be seen as a discrete model of d’Alembert’s solution
to the one-dimensional wave equation, which captures the superposition of
a right-going wave and a left-going wave, as we have discussed earlier in
Section 21.1.3. In its simplest form, we can express the value of a wave at
position m and time n as:

y(m,n) = y+(m− n) + y−(m+ n)

where y+ is the right-going wave and y− is the left-going wave. Intuitively,
the value of y at point m and time n is the sum of two delayed copies of
its traveling waves. As discusses before, these traveling waves will reflect at
boundaries such as the fixed ends of a string or the open or closed ends of
tubes.

What distinguishes this model from the simpler Karplus-Strong model
is that it captures waves traveling in both directions—and to realize that,
we need a closed loop of delay lines. But even with that generalization, the
equation above assumes a lossless system, and does not account for inter-
actions between the left- and right-traveling waves. The former quantity is
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flute :: Time → Double → Double → Double → Double
→ AudSF () Double

flute dur amp fqc press breath =
proc ()→ do

env1 ← envLineSeg [0, 1.1 ∗ press , press , press , 0]
[0.06, 0.2, dur − 0.16, 0.02]−≺ ()

env2 ← envLineSeg [0, 1, 1, 0]
[0.01, dur − 0.02, 0.01] −≺ ()

envib ← envLineSeg [0, 0, 1, 1]
[0.5, 0.5, dur − 1] −≺ ()

flow ← noiseWhite 42 −≺ ()
vib ← osc sineTable 0−≺ 5
let emb = breath ∗ flow ∗ env1 + env1 + vib ∗ 0.1 ∗ envib
rec flute ← delayLine (1/fqc) −≺ out

x ← delayLine (1/fqc/2)−≺ emb + flute ∗ 0.4
out ← filterLowPassBW −≺ (x − x ∗ x ∗ x + flute ∗ 0.4, 2000)

outA−≺ out ∗ amp ∗ env2
sineTable :: Table
sineTable = tableSinesN 4096 [1]

Figure 23.5: Euterpea Program for Flute Model
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often called the gain, and the latter the reflection coefficient. We have dis-
cussed previously the notion that waves are reflected at the ends of a string,
a tube, etc., but in general some interaction/reflection between the left-
and right-traveling waves can happen anywere. This more general model is
shown diagramatically in Figure 23.3(c), where g is the gain, and r is the
reflection coefficient.

Figure 23.3(b) shows a sequence of waveguides “wired together” to allow
for the possibility that the gain and reflection characteristics are different at
different points along the medium. The “termination” boxes can be thought
of as special waveguides that capture the effect of reflection at the end of a
string, tube, etc.

23.4.1 Waveguides in Euterpea

A simple waveguide with looping delay lines and gain factors, but that ig-
nores reflection, is shown below:

waveguide :: Double → Double → Double →
AudSF (Double,Double) (Double,Double)

waveguide del ga gb = proc (ain, bin)→ do
rec bout ← delayLine del −≺ bin − ga ∗ aout
aout ← delayLine del −≺ ain − gb ∗ bout

outA−≺ (aout , bout)

Here ga and gb are the gains, and del is the delay time of one delay line.

This waveguide is good enough for the examples studied in this book,
in that we assume no reflections occur along the waveguide, and that reflec-
tions at the end-points can be expressed manually with suitable feedback.
Similarly, any filtering or output processing can be expressed manually.

23.4.2 A Pragmatic Issue

In a circuit with feedback, DC (“direct current”) offsets can accumulate,
resulting in clipping. The DC offset can be “blocked” using a special high-
pass filter whose cutoff frequency is infrasonic. This filter can be captured
by the difference equation:

y[n] = x[n]− x[n− 1] + a ∗ y[n− 1]

Where x[n] and y[n] are the input and output, respectively, at the current
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dcBlock ::Double → AudSF Double Double
dcBlock a = proc xn → do

rec let yn = xn − xn 1 + a ∗ yn 1
xn 1 ← init 0−≺ xn
yn 1 ← init 0−≺ yn

outA−≺ yn

Figure 23.6: DC Blocking Filter in Euterpea

Image not in repository!

Figure 23.7: Transfer Function for DC Blocker

time n, and a is called the gain factor. If we think of the indexing of n versus
n − 1 as a one unit delay, we can view the equation above as the diagram
shown in Figure ??, where z−1 is the mathematical notation for a 1-unit
delay.1

If you recall from Section21.2.2, the one-unit delay operator in Euterpea
is called init . With that in mind, it is easy to write a Euterpea program
for a DC blocking filter, as shown in Figure 23.6. The transfer function
corresponding to this filter for different values of a is shown in Figure 23.7.
In practice, a value of 0.99 for a works well.

1This representation is called the Z transform of a signal.
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Appendix A

The PreludeList Module

The use of lists is particularly common when programming in Haskell, and
thus, not surprisingly, there are many pre-defined polymorphic functions for
lists. The list data type itself, plus some of the most useful functions on it,
are contained in the Standard Prelude’s PreludeList module, which we will
look at in detail in this chapter. There is also a Standard Library module
called List that has additional useful functions. It is a good idea to become
familiar with both modules.

Although this chapter may feel like a long list of “Haskell features,” the
functions described here capture many common patterns of list usage that
have been discovered by functional programmers over many years of tri-
als and tribulations. In many ways higher-order declarative programming
with lists takes the place of lower-level imperative control structures in more
conventional languages. By becoming familiar with these list functions you
will be able to more quickly and confidently develop your own applications
using lists. Furthermore, if all of us do this, we will have a common vocab-
ulary with which to understand each others’ programs. Finally, by reading
through the code in this module you will develop a good feel for how to
write proper function definitions in Haskell.

It is not necessary for you to understand the details of every function, but
you should try to get a sense for what is available so that you can return
later when your programming needs demand it. In the long run you are
well-advised to read the rest of the Standard Prelude as well as the various
Standard Libraries, to discover a host of other functions and data types that
you might someday find useful in your own work.
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A.1 The PreludeList Module

To get a feel for the PreludeList module, let’s first look at its module dec-
laration:

module PreludeList (
map, (++),filter , concat ,
head , last , tail , init ,null , length, (!!),
foldl , foldl1 , scanl , scanl1 , foldr , foldr1 , scanr , scanr1 ,
iterate, repeat , replicate , cycle,
take, drop, splitAt , takeWhile , dropWhile , span , break ,
lines,words , unlines , unwords , reverse , and , or ,
any , all , elem,notElem , lookup,
sum, product ,maximum ,minimum , concatMap,
zip, zip3 , zipWith , zipWith3 , unzip, unzip3 )
where

import qualified Char (isSpace)

infixl 9 !!
infixr 5 ++
infix 4 ∈, /∈

We will not discuss all of the functions listed above, but will cover most of
them (and some were discussed in previous chapters).

A.2 Simple List Selector Functions

head and tail extract the first element and remaining elements, respectively,
from a list, which must be non-empty. last and init are the dual functions
that work from the end of a list, rather than from the beginning.

head :: [a ]→ a
head (x : ) = x
head [ ] = error "PreludeList.head: empty list"

last :: [a ]→ a
last [x ] = x
last ( : xs) = last xs
last [ ] = error "PreludeList.last: empty list"

tail :: [a ]→ [a ]
tail ( : xs) = xs
tail [ ] = error "PreludeList.tail: empty list"
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init :: [a ]→ [a ]
init [x ] = [ ]
init (x : xs) = x : init xs
init [ ] = error "PreludeList.init: empty list"

Although head and tail were previously discussed in Section 3.1, the defi-
nitions here include an equation describing their behaviors under erroneous
situations—such as selecting the head of an empty list—in which case the
error function is called. It is a good idea to include such an equation for
any definition in which you have not covered every possible case in pattern-
matching; i.e. if it is possible that the pattern-matching could “run off the
end” of the set of equations. The string argument that you supply to the
error function should be detailed enough that you can easily track down the
precise location of the error in your program.

Details: If such an error equation is omitted, and then during pattern-matching

all equations fail, most Haskell systems will invoke the error function anyway, but

most likely with a string that will be less informative than one you can supply on

your own.

The null function tests to see if a list is empty.

null :: [a ]→ Bool
null [ ] = True
null ( : ) = False

A.3 Index-Based Selector Functions

To select the nth element from a list, with the first element being the 0th
element, we can use the indexing function (!!):

(!!) :: [a ]→ Int → a
(x : ) !! 0 = x
( : xs) !! n | n > 0 = xs !! (n − 1)
( : ) !! = error "PreludeList.!!: negative index"

[ ] !! = error "PreludeList.!!: index too large"
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Details: Note the definition of two error conditions; be sure that you understand

under what conditions these two equations would succeed. In particular, recall

that equations are matched in top-down order: the first to match is the one that

is chosen.

take n xs returns the prefix of xs of length n, or xs itself if n> length xs .
Similarly, drop n xs returns the suffix of xs after the first n elements, or [ ]
if n > length xs. Finally, splitAt n xs is equivalent to (take n xs , drop n xs).

take :: Int → [a ]→ [a ]
take 0 = [ ]
take [ ] = [ ]
take n (x : xs) | n > 0 = x : take (n − 1) xs
take =

error "PreludeList.take: negative argument"

drop :: Int → [a ]→ [a ]
drop 0 xs = xs
drop [ ] = [ ]
drop n ( : xs) | n > 0 = drop (n − 1) xs
drop =

error "PreludeList.drop: negative argument"

splitAt :: Int → [a ]→ ([a ], [a ])
splitAt 0 xs = ([ ], xs)
splitAt [ ] = ([ ], [ ])
splitAt n (x : xs) | n > 0 = (x : xs ′, xs ′′)

where (xs ′, xs ′′) = splitAt (n − 1) xs
splitAt =

error "PreludeList.splitAt: negative argument"

length :: [a ]→ Int
length [ ] = 0
length ( : l) = 1 + length l

For example:

take 3 [0, 1 . . 5]⇒ [0, 1, 2]
drop 3 [0, 1 . . 5]⇒ [3, 4, 5]
splitAt 3 [0, 1 . . 5]⇒ ([0, 1, 2], [3, 4, 5])
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A.4 Predicate-Based Selector Functions

takeWhile p xs returns the longest (possibly empty) prefix of xs , all of whose
elements satisfy the predicate p. dropWhile p xs returns the remaining
suffix. Finally, span p xs is equivalent to (takeWhile p xs , dropWhile p xs),
while break p uses the negation of p.

takeWhile :: (a → Bool )→ [a ]→ [a ]
takeWhile p [ ] = [ ]
takeWhile p (x : xs)
| p x = x : takeWhile p xs
| otherwise = [ ]

dropWhile :: (a → Bool )→ [a ]→ [a ]
dropWhile p [ ] = [ ]
dropWhile p xs@(x : xs ′)
| p x = dropWhile p xs ′

| otherwise = xs

span , break :: (a → Bool )→ [a ]→ ([a ], [a ])
span p [ ] = ([ ], [ ])
span p xs@(x : xs ′)
| p x = (x : xs ′, xs ′′) where (xs ′, xs ′′) = span p xs
| otherwise = (xs , [ ])

break p = span (¬ ◦ p)
filter removes all elements not satisfying a predicate:

filter :: (a → Bool )→ [a ]→ [a ]
filter p [ ] = [ ]
filter p (x : xs) | p x = x : filter p xs
| otherwise = filter p xs

A.5 Fold-like Functions

foldl1 and foldr1 are variants of foldl and foldr that have no starting value
argument, and thus must be applied to non-empty lists.

foldl :: (a → b → a)→ a → [b ]→ a
foldl f z [ ] = z
foldl f z (x : xs) = foldl f (f z x ) xs

foldl1 :: (a → a → a)→ [a ]→ a
foldl1 f (x : xs) = foldl f x xs
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foldl1 [ ] = error "PreludeList.foldl1: empty list"

foldr :: (a → b → b)→ b → [a ]→ b
foldr f z [ ] = z
foldr f z (x : xs) = f x (foldr f z xs)

foldr1 :: (a → a → a)→ [a ]→ a
foldr1 f [x ] = x
foldr1 f (x : xs) = f x (foldr1 f xs)
foldr1 [ ] = error "PreludeList.foldr1: empty list"

foldl1 and foldr1 are best used in cases where an empty list makes no sense
for the application. For example, computing the maximum or mimimum
element of a list does not make sense if the list is empty. Thus foldl1 max
is a proper function to compute the maximum element of a list.

scanl is similar to foldl , but returns a list of successive reduced values
from the left:

scanl f z [x1, x2, ... ] == [z , z ‘f ‘ x1, (z ‘f ‘ x1) ‘f ‘ x2, ... ]

For example:

scanl (+) 0 [1, 2, 3]⇒ [0, 1, 3, 6]

Note that last (scanl f z xs) = foldl f z xs . scanl1 is similar, but without
the starting element:

scanl1 f [x1, x2, ... ] == [x1, x1 ‘f ‘ x2, ... ]

Here are the full definitions:

scanl :: (a → b → a)→ a → [b ]→ [a ]
scanl f q xs = q : (case xs of

[ ]→ [ ]
x : xs → scanl f (f q x ) xs)

scanl1 :: (a → a → a)→ [a ]→ [a ]
scanl1 f (x : xs) = scanl f x xs
scanl1 [ ] = error "PreludeList.scanl1: empty list"

scanr :: (a → b → b)→ b → [a ]→ [b ]
scanr f q0 [ ] = [q0 ]
scanr f q0 (x : xs) = f x q : qs

where qs@(q : ) = scanr f q0 xs

scanr1 :: (a → a → a)→ [a ]→ [a ]
scanr1 f [x ] = [x ]
scanr1 f (x : xs) = f x q : qs

where qs@(q : ) = scanr1 f xs
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scanr1 [ ] = error "PreludeList.scanr1: empty list"

A.6 List Generators

There are some functions which are very useful for generating lists from
scratch in interesting ways. To start, iterate f x returns an infinite list of
repeated applications of f to x . That is:

iterate f x ⇒ [x , f x , f (f x ), ... ]

The “infinite” nature of this list may at first seem alarming, but in fact is
one of the more powerful and useful features of Haskell.

[say more]

iterate :: (a → a)→ a → [a ]
iterate f x = x : iterate f (f x )

repeat x is an infinite list, with x the value of every element. replicate n x is
a list of length n with x the value of every element. And cycle ties a finite
list into a circular one, or equivalently, the infinite repetition of the original
list.

repeat :: a → [a ]
repeat x = xs where xs = x : xs

replicate :: Int → a → [a ]
replicate n x = take n (repeat x )

cycle :: [a ]→ [a ]
cycle [ ] = error "Prelude.cycle: empty list"

cycle xs = xs ′ where xs ′ = xs ++ xs ′

A.7 String-Based Functions

Recall that strings in Haskell are just lists of characters. Manipulating
strings (i.e. text) is a very common practice, so it makes sense that Haskell
would have a few pre-defined functions to make this easier for you.

lines breaks a string at every newline character (written as ’\n’ in
Haskell), thus yielding a list of strings, each of which contains no newline
characters. Similary, words breaks a string up into a list of words, which
were delimited by white space. Finally, unlines and unwords are the in-
verse operations: unlines joins lines with terminating newline characters,
and unwords joins words with separating spaces. (Because of the potential



APPENDIX A. THE PRELUDELIST MODULE 395

presence of multiple spaces and newline characters, however, these pairs of
functions are not true inverses of each other.)

lines :: String → [String ]
lines "" = [ ]
lines s = let (l , s ′) = break (== ’\n’) s

in l : case s ′ of
[ ]→ [ ]
( : s ′′)→ lines s ′′

words :: String → [String ]
words s = case dropWhile Char .isSpace s of

""→ [ ]
s ′ → w : words s ′′

where (w , s ′′) = break Char .isSpace s ′

unlines :: [String ]→ String
unlines = concatMap (++"\n")

unwords :: [String ]→ String
unwords [ ] = ""

unwords ws = foldr1 (λw s → w ++ ’ ’ : s) ws

reverse reverses the elements in a finite list.

reverse :: [a ]− [a ]
reverse = foldl (flip (:)) [ ]

A.8 Boolean List Functions

and and or compute the logical “and” and “or,” respectively, of all of the
elements in a list of Boolean values.

and , or :: [Bool ]→ Bool
and = foldr (∧) True
or = foldr (∨) False

Applied to a predicate and a list, any determines if any element of the list
satisfies the predicate. An analogous behavior holds for all.

any , all :: (a → Bool )→ [a ]→ Bool
any p = or ◦map p
all p = and ◦map p
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A.9 List Membership Functions

elem is the list membership predicate, usually written in infix form, e.g.,
x ∈ xs (which is why it was given a fixity declaration at the beginning of
the module). notElem is the negation of this function.

elem,notElem :: (Eq a)⇒ a → [a ]→ Bool
elem x = any (== x )
notElem x = all (6= x )

It is common to store “key/value” pairs in a list, and to access the list
by finding the value associated with a given key (for this reason the list is
often called an association list). The function lookup looks up a key in an
association list, returning Nothing if it is not found, or Just y if y is the
value associated with the key.

lookup :: (Eq a)⇒ a → [(a, b)]→ Maybe b
lookup key [ ] = Nothing
lookup key ((x , y) : xys)
| key == x = Just y
| otherwise = lookup key xys

A.10 Arithmetic on Lists

sum and product compute the sum and product, respectively, of a finite list
of numbers.

sum, product :: (Num a)⇒ [a ]→ a
sum = foldl (+) 0
product = foldl (∗) 1

maximum and minimum return the maximum and minimum value, respec-
tively from a non-empty, finite list whose element type is ordered.

maximum ,minimum :: (Ord a)⇒ [a ]→ a
maximum [ ] = error "Prelude.maximum: empty list"

maximum xs = foldl1 max xs

minimum [ ] = error "Prelude.minimum: empty list"

minimum xs = foldl1 min xs

Note that even though foldl1 is used in the definition, a test is made for the
empty list to give an error message that more accurately reflects the source
of the problem.
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A.11 List Combining Functions

map and (++) were defined in previous chapters, but are repeated here for
completeness:

map :: (a → b)→ [a ]→ [a ]
map f [ ] = [ ]
map f (x : xs) = f x :map f xs

(++) :: [a ]→ [a ]→ [a ]
[ ] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

concat appends together a list of lists:

concat :: [ [a ] ]→ [a ]
concat xss = foldr (++) [ ] xss

concatMap does what it says: it concatenates the result of mapping a func-
tion down a list.

concatMap :: (a → [b ])→ [a ]→ [b ]
concatMap f = concat ◦map f

zip takes two lists and returns a list of corresponding pairs. If one input list
is short, excess elements of the longer list are discarded. zip3 takes three
lists and returns a list of triples. (“Zips” for larger tuples are contained in
the List Library.)

zip :: [a ]→ [b ]→ [(a, b)]
zip = zipWith (, )

zip3 :: [a ]→ [b ]→ [c ]→ [(a, b, c)]
zip3 = zipWith3 (, , )

Details: The functions (,) and (,,) are the pairing and tripling functions, respec-
tively:

(, ) ⇒ λx y → (x , y)
(, , )⇒ λx y z → (x , y, z )

The zipWith family generalises the zip and map families (or, in a sense,
combines them) by applying a function (given as the first argument) to each
pair (or triple, etc.) of values. For example, zipWith (+) is applied to two
lists to produce the list of corresponding sums.
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zipWith :: (a → b → c)→ [a ]→ [b ]→ [c ]
zipWith z (a : as) (b : bs)

= z a b : zipWith z as bs
zipWith = [ ]

zipWith3 :: (a → b → c → d)→ [a ]→ [b ]→ [c ]→ [d ]
zipWith3 z (a : as) (b : bs) (c : cs)

= z a b c : zipWith3 z as bs cs
zipWith3 = [ ]

The following two functions perform the inverse operations of zip and zip3 ,
respectively.

unzip :: [(a, b)]→ ([a ], [b ])
unzip = foldr (λ(a, b)∼(as , bs)→ (a : as , b : bs)) ([ ], [ ])

unzip3 :: [(a, b, c)]→ ([a ], [b ], [c ])
unzip3 = foldr (λ(a, b, c)∼(as , bs , cs)→ (a : as , b : bs , c : cs))

([ ], [ ], [ ])
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Haskell’s Standard Type
Classes

This provides a “tour” through the predefined standard type classes in
Haskell, as was done for lists in Chapter A. We have simplified these classes
somewhat by omitting some of the less interesting methods; the Haskell
Report and Standard Library Report contain more complete descriptions.

B.1 The Ordered Class

The equality class Eq was defined precisely in Chapter 7, along with a
simplified version of the class Ord. Here is its full specification of class Ord ;
note the many default methods.

class (Eq a)⇒ Ord a where
compare :: a → a → Ordering
(<), (6), (>), (>) :: a → a → Bool
max ,min :: a → a → a

compare x y
| x == y = EQ
| x 6 y = LT
| otherwise = GT

x 6 y = compare x y 6= GT
x < y = compare x y == LT
x > y = compare x y 6= LT
x > y = compare x y == GT

399
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max x y
| x > y = x
| otherwise = y

min x y
| x < y = x
| otherwise = y

data Ordering = LT | EQ | GT
deriving (Eq,Ord ,Enum,Read ,Show ,Bounded)

Note that the default method for compare is defined in terms of (6), and
that the default method for (6) is defined in terms of compare . This means
that an instance of Ord should contain a method for at least one of these
for everything to be well defined. (Using compare can be more efficient for
complex types.) This is a common idea in designing a type class.

B.2 The Enumeration Class

Class Enum has a set of operations that underlie the syntactic sugar of
arithmetic sequences; for example, the arithmetic sequence [1, 3 . . ] is actu-
ally shorthand for enumFromThen 1 3. If this is true, then we should be
able to generate arithmetic sequences for any type that is an instance of
Enum. This includes not only most numeric types, but also Char , so that,
for instance, [’a’ . . ’z’] denotes the list of lower-case letters in alphabetical
order. Furthermore, a user-defined enumerated type such as Color :

data Color = Red | Orange | Yellow | Green | Blue | Indigo | Violet
can easily be given an Enum instance declaration, after which we can cal-
culate the following results:

[Red . .Violet ] =⇒ [ Red ,Orange ,Yellow ,Green ,
Blue, Indigo,Violet ]

[Red ,Yellow . . ] =⇒ [ Red ,Yellow ,Blue,Violet ]
fromEnum Green =⇒ 3
toEnum 5 :: Color =⇒ Indigo

Indeed, the derived instance will give this result. Note that the sequences are
still arithmetic in the sense that the increment between values is constant,
even though the values are not numbers.

The complete definition of the Enum class is given below:
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class Enum a where
succ, pred :: a → a
toEnum :: Int → a
fromEnum :: a → Int
enumFrom :: a → [a ] -- [n..]
enumFromThen :: a → a → [a ] -- [n,n’..]
enumFromTo :: a → a → [a ] -- [n..m]
enumFromThenTo :: a → a → a → [a ] -- [n,n’..m]

-- Minimal complete definition: toEnum, fromEnum
succ = toEnum ◦ (+1) ◦ fromEnum
pred = toEnum ◦ (subtract 1) ◦ fromEnum
enumFrom x = map toEnum [fromEnum x . . ]
enumFromThen x y = map toEnum [fromEnum x , fromEnum y . . ]
enumFromTo x y = map toEnum [fromEnum x . . fromEnum y ]
enumFromThenTo x y z =
map toEnum [fromEnum x , fromEnum y . . fromEnum z ]

The six default methods are sufficient for most applications, so when writing
your own instance declaration it is usually sufficient to only provide methods
for the remaining two operations: toEnum and fromEnum .

In terms of arithmetic sequences, the expressions on the left below are
equivalent to those on the right:

enumFrom n [n . . ]
enumFromThen n n ′ [n,n ′ . . ]

enumFromTo n m [n . .m ]
enumFromThenTo n n ′ m [n,n ′ . .m ]

B.3 The Bounded Class

The class Bounded captures data types that are linearly bounded in some
way; i.e. they have both a minimum value and a maximum value.

class Bounded a where
minBound :: a
maxBound :: a
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B.4 The Show Class

Instances of the class Show are those types that can be converted to character
strings. This is useful, for example, when writing a representation of a value
to the standard output area or to a file. The class Read works in the other
direction: it provides operations for parsing character strings to obtain the
values that they represent. In this section we will look at the Show class; in
the next we will look at Read .

For efficiency reasons the primitive operations in these classes are some-
what esoteric, but they provide good lessons in both algorithm and software
design, so we will look at them in some detail.

First, let’s look at one of the higher-level functions that is defined in
terms of the lower-level primitives:

show :: (Show a)⇒ a → String

Naturally enough, show takes a value of any type that is a member of Show ,
and returns its representation as a string. For example, show (2 + 2) yields
the string "4", as does show (6−2) and show applied to any other expression
whose value is 4.

Furthermore, we can construct strings such as:

"The sum of "++ show x ++ " and "++ show y ++ " is "

++ show (x + y) ++ "."

with no difficulty. In particular, because (++) is right associative, the number
of steps to construct this string is directly proportional to its total length,
and we can’t expect to do any better than that. (Since (++) needs to recon-
struct its left argument, if it were left associative the above expression would
repeatedly reconstruct the same sub-string on each application of (++). If
the total string length were n, then in the worst case the number of steps
needed to do this would be proportional to n2, instead of proportional to n
in the case where (++) is right associative.)

Unfortunately, this strategy breaks down when construction of the list
is nested. A particularly nasty version of this problem arises for tree-shaped
data structures. Consider a function showTree that converts a value of type
Tree into a string, as in:

showTree (Branch (Branch (Leaf 2) (Leaf 3)) (Leaf 4))
=⇒ "< <2|3>|4>"

We can define this behavior straightforwardly as follows:

showTree :: (Show a)⇒ Tree a → String
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showTree (Leaf x )
= show x

showTree (Branch l r)
= "<"++ showTree l ++ "|"++ showTree r ++ ">"

Each of the recursive calls to showTree introduces more applications of (++),
but since they are nested, a large amount of list reconstruction takes place
(similar to the problem that would arise if (++) were left associative). If the
tree being converted has size n, then in the worst case the number of steps
needed to perform this conversion is proportional to n2. This is no good!

To restore linear complexity, suppose we had a function shows:

shows :: (Show a)⇒ a → String → String

which takes a showable value and a string and returns that string with the
value’s representation concatenated at the front. For example, we would
expect shows (2 + 2) "hello" to return the string "4hello". The string
argument should be thought of as an “accumulator” for the final result.

Using shows we can define a more efficient version of showTree which,
like shows , has a string accumulator argument. Let’s call this function
showsTree :

showsTree :: (Show a)⇒ Tree a → String → String
showsTree (Leaf x ) s

= shows x s
showsTree (Branch l r) s

= "<"++ showsTree l ("|"++ showsTree r (">"++ s))

This function requires a number of steps directly proportional to the size of
the tree, thus solving our efficiency problem. To see why this is so, note that
the accumulator argument s is never reconstructed. It is simply passed as an
argument in one recursive call to shows or showsTree , and is incrementally
extended to its left using (++).

showTree can now be re-defined in terms of showsTree using an empty
accumulator:

showTree t = showsTree t ""

Exercise B.1 Prove that this version of showTree is equivalent to the old.

Although this solves our efficiency problem, the presentation of this func-
tion (and others like it) can be improved somewhat. First, let’s create a type
synonym (part of the Standard Prelude):
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type ShowS = String → String

Second, we can avoid carrying accumulators around, and also avoid
amassing parentheses at the right end of long sequences of concatenations,
by using functional composition:

showsTree :: (Show a)⇒ Tree a → ShowS
showsTree (Leaf x )

= shows x
showsTree (Branch l r)

= ("<"++) ◦ showsTree l ◦ ("|"++) ◦ showsTree r ◦ (">"++)

Details: This can be simplified slightly more by noting that ("c"++) is equivalent

to (’c’:) for any character c.

Something more important than just tidying up the code has come about
by this transformation: We have raised the presentation from an object level
(in this case, strings) to a function level. You can read the type signature
of showsTree as saying that showsTree maps a tree into a showing function.
Functions like ("<"++) and ("a string"++) are primitive showing functions,
and we build up more complex ones by function composition.

The actual Show class in Haskell has two additional levels of complexity
(and functionality): (1) the ability to specify the precedence of a string
being generated, which is important when show ing a data type that has
infix constructors, since it determines when parentheses are needed, and (2)
a function for show ing a list of values of the type under consideration, since
lists have special syntax in Haskell and are so commonly used that they
deserve special treatment. The full definition of the Show class is given by:

class Show a where
showsPrec :: Int → a → ShowS
showList :: [a ]→ ShowS

showList [ ] = showString "[]"

showList (x : xs) = showChar ’[’ ◦ shows x ◦ showl xs
where showl [ ] = showChar ’]’

showl (x : xs) = showString ", " ◦ shows x ◦ showl xs
Note the default method for showList , and its “function level” style of defi-
nition.
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In addition to this class declaration the Standard Prelude defines the
following functions, which return us to where we started our journey in this
section:

shows :: (Show a)⇒ a → ShowS
shows = showsPrec 0

show :: (Show a)⇒ a → String
show x = shows x ""

Some details about showsPrec can be found in the Haskell Report, but
if you are not displaying constructors in infix notation, the precedence can
be ignored. Furthermore, the default method for showList is perfectly good
for most uses of lists that you will encounter. Thus, for example, we can
finish our Tree example by declaring it to be an instance of the class Show
very simply as:

instance (Show a)⇒ Show (Tree a) where
showsPrec n = showsTree

B.5 The Read Class

Now that we can convert trees into strings, let’s turn to the inverse problem:
converting strings into trees. The basic idea is to define a parser for a type a,
which at first glance seems as if it should be a function of type String → a.
This simple approach has two problems, however: (1) it’s possible that the
string is ambiguous, leading to more than one way to interpret it as a value
of type a, and (2) it’s possible that only a prefix of the string will parse
correctly. Thus we choose instead to return a list of (a,String) pairs as the
result of a parse. If all goes well we will always get a singleton list such
as [(v , "")] as the result of a parse, but we cannot count on it (in fact,
when recursively parsing sub-strings, we will expect a singleton list with a
non-empty trailing string).

The Standard Prelude provides a type synonym for parsers of the kind
just described:

type ReadS a = String → [(a,String)]

and also defines a function reads that by analogy is similar to shows :

reads :: (Read a)⇒ ReadS a

We will return later to the precise definition of this function, but for now
let’s use it to define a parser for the Tree data type, whose string represen-
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tation is as described in the previous section. List comprehensions give us
a convenient idiom for constructing such parsers:1

readsTree :: (Read a)⇒ ReadS (Tree a)
readsTree (’<’ : s) = [(Branch l r , u) | (l , ’|’ : t)← readsTree s,

(r , ’>’ : u)← readsTree t ]
readsTree s = [(Leaf x , t) | (x , t)← reads s ]

Let’s take a moment to examine this function definition in detail. There
are two main cases to consider: If the string has the form ’<’ : s we should
have the representation of a branch, in which case parsing s as a tree should
yield a left branch l followed by a string of the form ’|’ : t ; parsing t as a
tree should then yield the right branch r followed by a string of the form
’>’ : u. The resulting tree Branch l r is then returned, along with the
trailing string u. Note the expressive power we get from the combination of
pattern matching and list comprehension.

If the initial string is not of the form ’<’ : s, then we must have a leaf,
in which case the string is parsed using the generic reads function, and the
result is directly returned.

If we accept on faith for the moment that there is a Read instance for
Int that behaves as one would expect, e.g.:

(reads "5 golden rings") :: [(Int ,String)]
=⇒ [(5, " golden rings")]

then you should be able to verify the following calculations:

readsTree "< <1|2>|3>"

=⇒

There are a couple of shortcomings, however, in our definition of readsTree .
One is that the parser is quite rigid in that it allows no “white space” (such
as extra spaces, tabs, or line feeds) before or between the elements of the
tree representation. The other is that the way we parse our punctuation
symbols (’<’, ’|’, and ’>’) is quite different from the way we parse leaf
values and sub-trees. This lack of uniformity makes the function definition
harder to read.

We can address both of these problems by using a lexical analyzer, which
parses a string into primitive “lexemes” defined by some rules about the
string construction. The Standard Prelude defines a lexical analyzer:

1An even more elegant approach to parsing uses monads and parser combinators. These
are part of a standard parsing library distributed with most Haskell systems.
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lex :: ReadS String

whose lexical rules are those of the Haskell language, which can be found in
the Haskell Report. For our purposes, an informal explanation is sufficient:

lex normally returns a singleton list containing a pair of strings: the
first string is the first lexeme in the input string, and the second string is
the remainder of the input. White space – including Haskell comments – is
completely ignored. If the input string is empty or contains only white-space
and comments, lex returns [("", "")]; if the input is not empty in this sense,
but also does not begin with a valid lexeme after any leading white-space,
lex returns [ ].

Using this lexical analyzer, our tree parser can be rewritten as:

readsTree :: (Read a)⇒ ReadS (Tree a)
readsTree s = [(Branch l r , x ) | ("<", t)← lex s,

(l , u)← readsTree t ,
("|", v)← lex u,
(r , w)← readsTree v ,
(">", x )← lex w ]

++
[(Leaf x , t) | (x , t)← reads s ]

This definition solves both problems mentioned earlier: white-space is suit-
ably ignored, and parsing of sub-strings has a more uniform structure.

To tie all of this together, let’s first look at the definition of the class
Read in the Standard Prelude:

class Read a where
readsPrec :: Int → ReadS a
readList :: ReadS [a ]

readList = readParen False (λr → [pr | ("[", s)← lex r ,
pr ← readl s ])

where readl s = [([ ], t) | ("]", t) ← lex s ] ++
[(x : xs , u) | (x , t) ← reads s,

(xs , u) ← readl ′ t ]
readl ′ s = [([ ], t) | ("]", t) ← lex s ] ++

[(x : xs , v) | (",", t)← lex s,
(x , u) ← reads t ,
(xs , v) ← readl ′ u ]

readParen :: Bool → ReadS a → ReadS a
readParen b g = if b then mandatory else optional
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where optional r = g r ++mandatory r
mandatory r = [(x , u) | ("(", s)← lex r ,
sc (x , t)← optional s,

(")", u)← lex t ]

The default method for readList is rather tedious, but otherwise straight-
forward.

reads can now be defined, along with an even higher-level function, read :

reads :: (Read a)⇒ ReadS a
reads = readsPrec 0

read :: (Read a)⇒ String → a
read s = case [x | (x , t)← reads s, ("", "")← lex t ] of

[x ]→ x
[ ]→ error "PreludeText.read: no parse"

→ error "PreludeText.read: ambiguous parse"

The definition of reads (like shows) should not be surprising. The definition
of read assumes that exactly one parse is expected, and thus causes a run-
time error if there is no unique parse or if the input contains anything more
than a representation of exactly one value of type a (and possibly comments
and white-space).

You can test that the Read and Show instances for a particular type are
working correctly by applying (read ◦ show ) to a value in that type, which
in most situations should be the identity function.

B.6 The Index Class

The Standard Prelude defines a type class of array indices:

class (Ord a)⇒ Ix a where
range :: (a, a)→ [a ]
index :: (a, a)→ a → Int
inRange :: (a, a)→ a → Bool

Arrays are defined elsewhere, but the index class is useful for other things
besides arrays, so I will describe it here.

Instance declarations are provided for Int , Integer , Char , Bool , and
tuples of Ix types; in addition, instances may be automatically derived for
enumerated and tuple types. You should think of the primitive types as
vector indices, and tuple types as indices of multidimensional rectangular
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arrays. Note that the first argument of each of the operations of class Ix is
a pair of indices; these are typically the bounds (first and last indices) of an
array. For example, the bounds of a 10-element, zero-origin vector with Int
indices would be (0, 9), while a 100 by 100 1-origin matrix might have the
bounds ((1, 1), (100, 100)). (In many other languages, such bounds would
be written in a form like 1 : 100, 1 : 100, but the present form fits the type
system better, since each bound is of the same type as a general index.)

The range operation takes a bounds pair and produces the list of indices
lying between those bounds, in index order. For example,

range (0, 4) =⇒ [0, 1, 2, 3, 4]
range ((0, 0), (1, 2)) =⇒ [(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)]

The inRange predicate determines whether an index lies between a given
pair of bounds. (For a tuple type, this test is performed componentwise,
and then combined with (∧).) Finally, the index operation determines the
(zero-based) position of an index within a bounded range; for example:

index (1, 9) 2 =⇒ 1
index ((0, 0), (1, 2)) (1, 1) =⇒ 4

B.7 The Numeric Classes

The Num class and the numeric class hierarchy were briefly described in
Section 7.4. Figure B.1 gives the full class declarations.
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class (Eq a,Show a)⇒ Num a where
(+), (−), (∗) :: a → a → a
negate :: a → a
abs, signum :: a → a
fromInteger :: Integer → a

class (Num a,Ord a)⇒ Real a where
toRational :: a → Rational

class (Real a,Enum a)⇒ Integral a where
quot , rem , div ,mod :: a → a → a
quotRem , divMod :: a → a → (a, a)
toInteger :: a → Integer

class (Num a)⇒ Fractional a where
(/) :: a → a → a
recip :: a → a
fromRational :: Rational → a

class (Fractional a)⇒ Floating a where
pi :: a
exp, log , sqrt :: a → a
(∗∗), logBase :: a → a → a
sin, cos , tan :: a → a
asin, acos , atan :: a → a
sinh, cosh , tanh :: a → a
asinh, acosh , atanh :: a → a

class (Real a,Fractional a)⇒ RealFrac a where
properFraction :: (Integral b)⇒ a → (b, a)
truncate, round :: (Integral b)⇒ a → b
ceiling,floor :: (Integral b)⇒ a → b

class (RealFrac a,Floating a)⇒ RealFloat a where
floatRadix :: a → Integer
floatDigits :: a → Int
floatRange :: a → (Int , Int)
decodeFloat :: a → (Integer , Int)
encodeFloat :: Integer → Int → a
exponent :: a → Int
significand :: a → a
scaleFloat :: Int → a → a
isNaN , isInfinite , isDenormalized , isNegativeZero, isIEEE

:: a → Bool

Figure B.1: Standard Numeric Classes



Appendix C

Built-in Types Are Not
Special

Throughout this text we have introduced many “built-in” types such as lists,
tuples, integers, and characters. We have also shown how new user-defined
types can be defined. Aside from special syntax, you might be wondering if
the built-in types are in any way more special than the user-defined ones.
The answer is no. The special syntax is for convenience and for consistency
with historical convention, but has no semantic consequence.

We can emphasize this point by considering what the type declarations
would look like for these built-in types if in fact we were allowed to use
the special syntax in defining them. For example, the Char type might be
written as:

data Char = ’a’ | ’b’ | ’c’ | ... -- This is not valid
| ’A’ | ’B’ | ’C’ | ... -- Haskell code!
| ’1’ | ’2’ | ’3’ | ...

These constructor names are not syntactically valid; to fix them we would
have to write something like:

data Char = Ca | Cb | Cc | ...
| CA | CB | CC | ...
| C1 | C2 | C3 | ...

Even though these constructors are actually more concise, they are quite
unconventional for representing characters, and thus the special syntax is
used instead.

In any case, writing “pseudo-Haskell” code in this way helps us to see

411
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through the special syntax. We see now that Char is just a data type
consisting of a large number of nullary (meaning they take no arguments)
constructors. Thinking of Char in this way makes it clear why, for example,
we can pattern-match against characters; i.e., we would expect to be able
to do so for any of a data type’s constructors.

Similarly, using pseudo-Haskell, we could define Int and Integer by:

-- more pseudo-code:
data Int = (−2ˆ29) | ... | −1 | 0 | 1 | ... | (2ˆ29 − 1)
data Integer = ...−2 | −1 | 0 | 1 | 2 ...

(Recall that −229 to 229−1 is the minimum range for the Int data type.)
Int is clearly a much larger enumeration than Char , but it’s still finite!
In contrast, the pseudo-code for Integer (the type of arbitrary precision
integers) is intended to convey an infinite enumeration (and in that sense
only, the Integer data type is somewhat special).

Haskell has a data type called unit which has exactly one value: ().
The name of this data type is also written (). This is trivially expressed in
Haskell pseudo-code:

data () = () -- more pseudo-code

Tuples are also easy to define playing this game:

data (a, b) = (a, b) -- more pseudo-code
data (a, b, c) = (a, b, c)
data (a, b, c, d) = (a, b, c, d)

and so on. Each declaration above defines a tuple type of a particular
length, with parentheses playing a role in both the expression syntax (as
data constructor) and type-expression syntax (as type constructor). By
“and so on” we mean that there are an infinite number of such declarations,
reflecting the fact that tuples of all finite lengths are allowed in Haskell.

The list data type is also easily handled in pseudo-Haskell, and more
interestingly, it is recursive:

data [a ] = [ ] | a : [a ] -- more pseudo-code
infixr 5 :

We can now see clearly what we described about lists earlier: [ ] is the empty
list, and (:) is the infix list constructor; thus [1, 2, 3] must be equivalent to
the list 1 : 2 : 3 : [ ]. (Note that (:) is right associative.) The type of [ ] is [a ],
and the type of (:) is a → [a ]→ [a ].
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Details: The way (:) is defined here is actually legal syntax—infix constructors

are permitted in data declarations, and are distinguished from infix operators (for

pattern-matching purposes) by the fact that they must begin with a colon (a

property trivially satisfied by “:”).

At this point the reader should note carefully the differences between
tuples and lists, which the above definitions make abundantly clear. In
particular, note the recursive nature of the list type whose elements are
homogeneous and of arbitrary length, and the non-recursive nature of a
(particular) tuple type whose elements are heterogeneous and of fixed length.
The typing rules for tuples and lists should now also be clear:

For (e1, e2, ..., en), n > 2, if Ti is the type of ei , then the type of the
tuple is (T1,T2, ...,Tn).

For [e1, e2, ..., en ],n > 0, each ei must have the same type T , and the
type of the list is [T ].
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Pattern-Matching Details

In this chapter we will look at Haskell’s pattern-matching process in greater
detail.

Haskell defines a fixed set of patterns for use in case expressions and
function definitions. Pattern matching is permitted using the constructors
of any type, whether user-defined or pre-defined in Haskell. This includes
tuples, strings, numbers, characters, etc. For example, here’s a contrived
function that matches against a tuple of “constants:”

contrived :: ([a ],Char , (Int ,Float ),String ,Bool )→ Bool
contrived ([ ], ’b’, (1, 2.0), "hi",True) = False

This example also demonstrates that nesting of patterns is permitted (to
arbitrary depth).

Technically speaking, formal parameters to functions are also patterns—
it’s just that they never fail to match a value. As a “side effect” of a
successful match, the formal parameter is bound to the value it is being
matched against. For this reason patterns in any one equation are not
allowed to have more than one occurrence of the same formal parameter.

A pattern that may fail to match is said to be refutable; for example, the
empty list [ ] is refutable. Patterns such as formal parameters that never fail
to match are said to be irrefutable. There are three other kinds of irrefutable
patterns, which are summarized below.

As-Patterns Sometimes it is convenient to name a pattern for use on the
right-hand side of an equation. For example, a function that duplicates the
first element in a list might be written as:

414
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f (x : xs) = x : x : xs

Note that x : xs appears both as a pattern on the left-hand side, and as an
expression on the right-hand side. To improve readability, we might prefer
to write x :xs just once, which we can achieve using an as-pattern as follows:1

f s@(x : xs) = x : s

Technically speaking, as-patterns always result in a successful match, al-
though the sub-pattern (in this case x : xs) could, of course, fail.

Wildcards Another common situation is matching against a value we
really care nothing about. For example, the functions head and tail can be
written as:

head (x : ) = x
tail ( : xs) = xs

in which we have “advertised” the fact that we don’t care what a certain
part of the input is. Each wildcard will independently match anything, but
in contrast to a formal parameter, each will bind nothing; for this reason
more than one are allowed in an equation.

Lazy Patterns There is one other kind of pattern allowed in Haskell.
It is called a lazy pattern, and has the form ∼pat . Lazy patterns are ir-
refutable: matching a value v against ∼pat always succeeds, regardless of
pat . Operationally speaking, if an identifier in pat is later “used” on the
right-hand-side, it will be bound to that portion of the value that would
result if v were to successfully match pat , and ⊥ otherwise.

Lazy patterns are useful in contexts where infinite data structures are
being defined recursively. For example, infinite lists are an excellent vehicle
for writing simulation programs, and in this context the infinite lists are
often called streams.

Pattern-Matching Semantics

So far we have discussed how individual patterns are matched, how some are
refutable, some are irrefutable, etc. But what drives the overall process? In

1Another advantage to doing this is that a naive implementation might otherwise com-
pletely reconstruct x : xs rather than re-use the value being matched against.
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what order are the matches attempted? What if none succeed? This section
addresses these questions.

Pattern matching can either fail, succeed or diverge. A successful match
binds the formal parameters in the pattern. Divergence occurs when a value
needed by the pattern diverges (i.e. is non-terminating) or results in an error
(⊥). The matching process itself occurs “top-down, left-to-right.” Failure of
a pattern anywhere in one equation results in failure of the whole equation,
and the next equation is then tried. If all equations fail, the value of the
function application is ⊥, and results in a run-time error.

For example, if bot is a divergent or erroneous computation, and if [1, 2]
is matched against [0, bot ], then 1 fails to match 0, so the result is a failed
match. But if [1, 2] is matched against [bot , 0], then matching 1 against bot
causes divergence (i.e. ⊥).

The only other twist to this set of rules is that top-level patterns may
also have a boolean guard, as in this definition of a function that forms an
abstract version of a number’s sign:

sign x | x > 0 = 1
| x == 0 = 0
| x < 0 = − 1

Note here that a sequence of guards is given for a single pattern; as with
patterns, these guards are evaluated top-down, and the first that evaluates
to True results in a successful match.

An Example The pattern-matching rules can have subtle effects on the
meaning of functions. For example, consider this definition of take:

take 0 = [ ]
take [ ] = [ ]
take n (x : xs) = x : take (n − 1) xs

and this slightly different version (the first 2 equations have been reversed):

take1 [ ] = [ ]
take1 0 = [ ]
take1 n (x : xs) = x : take1 (n − 1) xs
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Now note the following:

take 0 bot =⇒ [ ]
take1 0 bot =⇒ ⊥

take bot [ ] =⇒ ⊥
take1 bot [ ] =⇒ [ ]

We see that take is “more defined” with respect to its second argument,
whereas take1 is more defined with respect to its first. It is difficult to
say in this case which definition is better. Just remember that in certain
applications, it may make a difference. (The Standard Prelude includes a
definition corresponding to take.)

Case Expressions

Pattern matching provides a way to “dispatch control” based on structural
properties of a value. However, in many circumstances we don’t wish to
define a function every time we need to do this. Haskell’s case expression
provides a way to solve this problem. Indeed, the meaning of pattern match-
ing in function definitions is specified in the Haskell Report in terms of case
expressions, which are considered more primitive. In particular, a function
definition of the form:

f p11...p1k = e1
...
f pn1...pnk = en

where each pij is a pattern, is semantically equivalent to:

f x1 x2 ... xk = case (x1, ..., xk ) of (p11, ..., p1k)→ e1
...
(pn1, ..., pnk)→ en

where the xi are new identifiers. For example, the definition of take given
earlier is equivalent to:

take m ys = case (m, ys) of
(0, ) → [ ]
( , [ ]) → [ ]
(n, x : xs)→ x : take (n − 1) xs
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For type correctness, the types of the right-hand sides of a case expression
or set of equations comprising a function definition must all be the same;
more precisely, they must all share a common principal type.

The pattern-matching rules for case expressions are the same as we have
given for function definitions.
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